Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biodegradable Magnesium Stents For Coronary Arteries

01.06.2007
Biodegradable magnesium stents have been developed to treat blockages in coronary arteries which can degrade within four months and achieve the same results as conventional stents, conclude authors of an Article published in this week’s edition of The Lancet.

But both the Article and an accompanying Comment warn longer term follow-up of the patients fitted with biodegradable stents is needed.

Coronary stents improve immediate and late results of balloon angioplasty by closing up dissections and preventing collapse of the arterial walls.

Professor Raimund Erbel, Department of Cardiology, West German Heart Centre Essen, Germany, and colleagues successfully implanted 71 of the biodegradable magnesium stents in 63 patients in their study – the PROGRESS-AMS clinical trial.

The researchers found that after 12 months, the stents were safe, with no incidence of stent thrombosis (clotting within the stent), heart attack or death in any of the patients. They found that the diameter of the blood vessel within the stent (in-stent acute gain) increased by an average of 1.41mm. Whilst the stent struts disappear over time, ultrasound confirms they remain present but have been absorbed into the vessel walls, with the space left behind “filled in.”

The magnesium is eventually replaced by calcium and phosphorous through the body’s natural processes.

However the trial also showed that angiographic restenosis (re-blocking of the artery) occurred in 47.5% of patients who received the biodegradable stents, and 27% needed target lesion vascularisation within 12 months due to recurrent ischaemia (lack of blood flow to the tissues).

The authors say: “This study showed that absorbable magnesium stents can be delivered and expanded at high pressure in artherosclerotic coronary arteries, providing good mechanical scaffolding and achieving a lumen enlargement similar to the immediate lumen gain obtained with conventional metallic stents.”

The Article says the new biodegradable stents overcome the limitations of conventional permanent stents – namely that they can cause thrombosis many months after implantation – and thus regular dual antiplatelet drug treatment such as aspirin and clopidogrel are required to prevent this occurring in patients with conventional stents fitted.

And drug-eluting stents have limitations because despite being able to achieve significant decreases in angiographic restenosis, they can cause hypersensitivity reactions and late-stent thrombosis, possibly because the drugs eluted hinder re-endothelialisation (re-lining of the inside wall of the artery) of stent struts. Biodegradable stents avoid this problem.

The authors caution that studies with more patients and longer term follow-up are required to confirm the safety of biodegradable magnesium stents.

They say: “For a new product such as absorbable metal stents, four months of angiographical study and 12 months clinical follow-up might be insufficient to capture all the potential late events and complications.”

They conclude: “This study shows that biodegradable magnesium stents can achieve an immediate angiographic result similar to the result of other metal stents and can be safely degraded after four months. Modifications of stent characteristics with prolonged degradation and drug elution are currently in development.”

In an accompanying comment, Dr John Ormiston and Dr Mark Webster, Mercy Angiography and Auckland City Hospital, Auckland, New Zealand, say: “Bioabsorbable stents are in an early stage of development but hold considerable promise for overcoming many of the limitations of permanent metallic implants.”

They add: “The initial patients treated with these devices will need to be followed up closely and for a long time. Whether bioabsorbable stents signal the threshold of a new era for percutaneous coronary intervention is yet to unfold.”

Tony Kirby | alfa
Further information:
http://www.thelancet.com
http://www.thelancet.com/webfiles/images/clusters/thelancet/press_office/Scaffolding.pdf

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>