Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR advance relies on microscopic detector

15.05.2007
Technology similar to Wi-Fi laptop antennas could vastly improve diagnostics

Detecting the molecular structure of a tiny protein using nuclear magnetic resonance (NMR) currently requires two things: a million-dollar machine the size of a massive SUV, and a large sample of the protein under study.

Now, researchers from MIT's Center for Bits and Atoms report the development of a radically different approach to NMR. The new highly sensitive technique, which makes use of a microscopic detector, decreases by several orders of magnitude the amount of protein needed to measure molecular structure.

The new technology could ultimately lead to the proliferation of tabletop NMR devices in every research laboratory and medical office. Among other things, such devices could prove invaluable in diagnosing a variety of diseases.

"It's revolutionary," said Shuguang Zhang, one of the authors and associate director of MIT's Center for Biological Engineering. "It's not just incremental progress."

The research team reports the work in the online and print editions of the Proceedings of the National Academy of Sciences the week of May 14. Lead author Yael Maguire, a former MIT graduate student who earned his Ph.D. for this work, will give a talk on it May 16 at the VII European Protein Symposium in Stockholm.

NMR, along with X-ray crystallography, is commonly used to determine the structure of proteins and other molecules. NMR probes normally consist of a coil that surrounds the sample being studied. The coil creates a magnetic field that interacts with the nuclear spin of atoms in the sample, and those interactions reveal how the atoms are connected.

With current NMR machines, you need about 1017 (more than a million
billion) molecules of a protein to determine its molecular structure.
Some researchers have tried to make tiny coils to study smaller samples, but it has proven very difficult to scale these to small sizes to analyze tiny samples and to create high throughput methods.

Instead, research originally aimed at improving quantum computing led the MIT researchers to a completely different approach based on guiding waves.

"We were trying to get away from coils and see if we could find a new way to look at it," said Maguire, now a visiting researcher at MIT and chief technology officer of Cambridge-based ThingMagic.

How it works

The new approach starts with technology similar to the Wi-Fi antennas found in laptop computers. These antennas consist of a flat strip of metal. Using a laser, the MIT team made a microscopic defect (a slot) in such a conducting structure, known as a strip line. In that location a little bit of the magnetic field leaks out of the line, creating a uniform, concentrated magnetic field. That field allows the slot to be used as an NMR probe, in place of a coil.

The detector described in the PNAS paper is a plastic card about one-third the size of a credit card and is easy and inexpensive to produce. To get structural information, the new detector must still be placed in a massive machine housing a superconducting magnet, just as the coil probes are. However, the MIT researchers anticipate that the microslot's small sample volume will allow much smaller tabletop spectrometers to be developed.

Zhang said such NMR devices could prove especially valuable in diagnosing diseases caused by misfolded proteins, such as Alzheimer's and Huntington's, or prion diseases like Cruetzfeld-Jakob disease. It could also allow early detection of glaucoma and cataracts, which could be diagnosed by testing a single teardrop. "You could detect it so early it will become treatable," Zhang said.

The new technology could dramatically improve the rate of biomedical research, because it can take up to a year to obtain enough material for an NMR study using the coil probes, said co-author Professor Neil Gershenfeld, director of MIT's Center for Bits and Atoms. That is "a major limiting step in drug discovery and studying biological pathways," he said.

The probes could also be used to make portable devices for diagnostics or soil analysis. And because the smaller devices are cheaper to make, they should be affordable even in developing countries where NMR machines are now rare, said Zhang.

Asking big questions

Maguire got the idea for the project after talking to Zhang and asking him what kind of new device would make the biggest impact in biology. For Zhang, the answer was immediate: improving NMR.

Elucidating structure is critically important for biologists because structure determines function, said Zhang. The goal for the project was to create an NMR detector sensitive enough to detect structural information using the amount of protein in a spot on a two-dimensional gel used for electrophoresis (about 1014 molecules).

The task was daunting. "Nobody in their right mind would try to take one spot from that gel and get a molecular structure from it," said Zhang.

However, Zhang said that he believes in the sentiment expressed by Francis Crick, the legendary biologist who determined the double helix structure of DNA along with James Watson: You need to ask big questions in order to get big answers.

Zhang adds that the project probably never would have happened without interdisciplinary collaboration: "Biologists would never have thought of this type of machine, but a physicist would never have asked the question," he said.

Before starting this project, Maguire and Gershenfeld, with co-author Isaac Chuang, had already used NMR to create early quantum computers.

Their effort to improve the computing capabilities turned out to be surprisingly relevant to detecting molecular structures, an "unexpected spinoff," said Gershenfeld.

"We were not at all thinking about biology, but this turned out to be exactly what was needed to improve biological sensitivity,"

Gershenfeld said.

The research was funded by the National Science Foundation.

Anne Trafton | MIT News Office
Further information:
http://www.mit.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>