Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heart monitor sets the pace for new inventions

A new device that will allow doctors to monitor patients' hearts without even touching them could also soon be used to test carbon composite aircraft parts and microchips for defects more accurately and easily, thanks to new research by the inventors.

A team from the Centre for Physical Electronics and Quantum Technology in the Department of Engineering and Design at the University of Sussex has already successfully developed laboratory prototypes for these applications using electric potential sensors (EPS).

Similar devices, which measure magnetic fields, already exist. The EPS, however, offers a non-invasive way of measuring lesser-explored electric fields, which are present wherever there is electrical activity.

The monitor gives precise readings of electrical activity of the patient's heart without the need to connect the patient to equipment via pads and wires. A reading can be taken from the tip of a finger or remotely - a heartbeat can even be detected from up to a metre away in the laboratory. The aim is to simplify the procedure for acquiring high quality signals. The monitor is not commercially available yet and will be subject to patent licensing and further clinical trials in the near future.

Now the team - Dr Robert Prance, Dr Christopher Harland and Dr Helen Prance - has been awarded £762,000 by the Engineering and Physical Sciences Research Council (EPSRC) to investigate many areas for which EPS technology could be adapted, including other aspects of medical science, aviation, microchip manufacture and the automotive industry.

The four-year project, which follows on from a £1.1m EPSRC-funded (Basic Technology) research programme, will involve setting up pilot schemes with other scientists and businesses to develop a range of specific prototypes and test them.

Dr Robert Prance says: "This funding enables the Centre to consolidate research activity in a wide range of areas and to engage with appropriate academic and commercial partners. It is our belief that this non-contact technology will form the basis for new imaging instruments which will impact on both research and routine monitoring in many areas of science and technology."

The same technology has also been adapted to test for faults in microchip circuitry and even in stainless steel, carbon fibre composites and aircraft parts. EPS technology could also help to enhance MRI scanning techniques in hospitals.

Maggie Clune | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>