Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gold nanoparticles to be used in early diagnostics and treatment of cancer

By attaching gold nanoparticles – like tiny balls or rods- to cancer cells, earlier detection will be possible. Using photoacoustics – a combination of laser light and ultrasound-, scientists of the BMTI Institute for Biomedical Technology expect to improve diagnostics, especially in the early stage of the disease.

A step further is the use of the gold particles in actual treatment of cancer. For new in vitro and preclinical tests, the scientists have received funding from the Dutch research programme IOP Photonic Devices.

Gold nanoparticles have highly interesting properties: they can be heated rapidly whenever infrared light of the right wavelength touches them. By attaching antibodies to the nanorods, which can recognize a specific cancer cell, this heating phenomenon can be used in cancer detection. Heating of the gold results in a varying pressure near the particle. This pressure change, in turn is expressed in the generation of ultrasound. In this way, light from a laser eventually results in sound. This acoustic signal gives valuable information about the presence of cancer cells.

The scientists led by prof. Ton van Leeuwen of the Biophysical Engineering Group expect better results than currently possible with imaging techniques. X-Ray and MRI, for example, both have insufficient contrast to discern cancer cells from healthy tissue in the very beginning of the disease.

Photothermal therapy

The phenomenon resulting in rapid heating of the gold particles, is called plasmon resonance: the shape of the particles determines the wavelength at which this happens. The temperature rise can be up to 100 degrees. For the scientists this is an indication for possible use in cancer treatment. Photothermal therapy would use the heated gold to destroy the tumor. Another option would be to include gold particles in capsules filled with cancer medication: the capsule attaches to the cancer cell, is heated and the medicine is released locally.

Both diagnostic and therapeutic applications will be investigated by the UT scientists together with colleagues from the Erasmus MC in Rotterdam and two companies: Esoate Europe and Luminostix. The project is financed from the innovation oriented programme IOP Photonic Devices of the Dutch Ministry of Economic Affairs. Dr. Srirang Manohar from the Biophysical Engineering group already received a VENI grant for his initial research on the applications of gold nanoparticles, and there’s also been related research within the Non Invasive Molecular Tumor Imaging and Killing (NIMTIK) focus project of the BMTI Institute.

Wiebe van der Veen | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>