Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent materials to regenerate bone tissue

30.03.2007
More than half a million people in the European Union and a million in the United States suffer from disorders in or serious defects of some part of their bone structure. Operations involving grafts or implants, required to mitigate the damage, depend decisively on the materials used.

The European Nanobiocom project, led by INASMET-Tecnalia with the help of others, is working on the regeneration and repair of bone tissue. Seven other bodies, leaders in innovation within this specialism, are also taking part in the project. The goal is to come up with a substitute for bone tissue that can put the bone right and regenerate in such a way that it carries out similar functions as in its natural state. From Spain the Institute of Biomechanics of Valencia and Progénika Biopharma S.A. are also participating.

In the case of substantial deterioration of the bone, it may be necessary for the implant to provide both functional and physiological properties of the damaged item. Given this hypothesis, the bone implants have to comply with a series of requisites capable of contributing to a reconstruction of the deteriorated bone tissue in the most efficient and least discomfiting manner, without any serious repercussion. Another exigency involves the carrying out of the mechanical functions of the damaged bone while the desired regeneration takes place.

The solutions have to be capable, moreover, of remedying particularly serious damage, such as those due to congenital deficiencies, degenerative illnesses, cancerous disorders and other damage caused by accidents. The implants required for this type of solutions are more complex and sophisticated than the small implants known to date. .

The Nanobiocom project aims at developing a support matrix (scaffold) of a compound material that is ‘intelligent’, proactive, and capable of repairing and regenerating bone tissue. To this end, it has to be bioactive, capable of acting on the tissue-generating system and its corresponding genes, as well as respond appropriately to the physiological and biological changes, both internal and external, of that system.

Also necessary are size and shape characteristics, as well as mechanical functions appropriate to healthy bones.

The specific tasks of the project focus on putting the finishing touches to the intelligent material, based on nanoparticles and of a biodegradable nature. Also to be developed is the cell culture in three dimensions, as well as ensuring the biocompatibility of the material.

Egoitz Etxebeste | basqueresearch
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1256

More articles from Medical Engineering:

nachricht UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy
22.11.2017 | University of California - Los Angeles

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>