Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent materials to regenerate bone tissue

30.03.2007
More than half a million people in the European Union and a million in the United States suffer from disorders in or serious defects of some part of their bone structure. Operations involving grafts or implants, required to mitigate the damage, depend decisively on the materials used.

The European Nanobiocom project, led by INASMET-Tecnalia with the help of others, is working on the regeneration and repair of bone tissue. Seven other bodies, leaders in innovation within this specialism, are also taking part in the project. The goal is to come up with a substitute for bone tissue that can put the bone right and regenerate in such a way that it carries out similar functions as in its natural state. From Spain the Institute of Biomechanics of Valencia and Progénika Biopharma S.A. are also participating.

In the case of substantial deterioration of the bone, it may be necessary for the implant to provide both functional and physiological properties of the damaged item. Given this hypothesis, the bone implants have to comply with a series of requisites capable of contributing to a reconstruction of the deteriorated bone tissue in the most efficient and least discomfiting manner, without any serious repercussion. Another exigency involves the carrying out of the mechanical functions of the damaged bone while the desired regeneration takes place.

The solutions have to be capable, moreover, of remedying particularly serious damage, such as those due to congenital deficiencies, degenerative illnesses, cancerous disorders and other damage caused by accidents. The implants required for this type of solutions are more complex and sophisticated than the small implants known to date. .

The Nanobiocom project aims at developing a support matrix (scaffold) of a compound material that is ‘intelligent’, proactive, and capable of repairing and regenerating bone tissue. To this end, it has to be bioactive, capable of acting on the tissue-generating system and its corresponding genes, as well as respond appropriately to the physiological and biological changes, both internal and external, of that system.

Also necessary are size and shape characteristics, as well as mechanical functions appropriate to healthy bones.

The specific tasks of the project focus on putting the finishing touches to the intelligent material, based on nanoparticles and of a biodegradable nature. Also to be developed is the cell culture in three dimensions, as well as ensuring the biocompatibility of the material.

Egoitz Etxebeste | basqueresearch
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1256

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>