Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antennas Inside Us

An exceptionally useful thing is being developed by the specialists of the Academician Zababakhin Scientific Research Institute of Technical Physics.

These are diminutive antennas intended for running in complicated conditions of a human organism. Such antennas will be able to provide uninterrupted radio communication between devices implanted in the patient’s organism (including cardiostimulators) and physicians. If the researchers manage to implement the intended concepts, this will make life of some patients much more comfortable, and lives of other patients will be saved.

The information about this development is available at the advanced research section of the International Science and Technology Center site (

“Recently, electronic devices for medical purposes, including various physiological sensors, insulinic pumps, cardiostimulators and defibrillators have become not simply small, but diminutive, says Lydia Lvova, senior staff scientist, Ph. D. (Engineering). Surgeons introduce the devices into the patient’s organism, and then they run absolutely independently – they watch the work of certain person’s organs or, as may be required, adjust their work according to the program. The information obtained through such a device can be in principle kept in a special storage module, and then analyzed – in case the patient’s condition has changed and the device is to be reprogramed accordingly.

Unfortunately, in the majority of cases, the device is to be extracted from the patient’s body, but this is not always possible. Moreover, the device becomes simply useless in the situation when urgent interference is needed but the program does not provide for this. It's quite another matter if the device operation could be managed remotely - by radio. Then the physician could not only get the information about the patient’s current health status straight from the remote console, but also take measures instantly in needed.”

Consequently, a miniature transmitter and a miniature combined antenna are needed. It turned out to be a complicated task to make a necessary antenna. In contrast to antennas, for example, in cellular phones, they will have to work not in the open air but in a complicated organism environment - roughly speaking, surrounded by blood, bones, muscles, etc., that is in the environment, which is transparent to far from all radio wave bands. And finally, the antenna should possess a sufficiently high electromagnetic energy-transfer coefficient – so that it used resource of energy source as efficiently as possible, thus providing maximum duration of continuous work. In other words, such antenna should be both small and sufficiently powerful – to “break through” the organism tissues and to bring the necessary information loss-free to the physician. It should be kept in mind, that not all frequencies are allowed for medical application – only the 402-405 MHz (MICS standard), 433-434 MHz or 2.45 GHz frequencies are allowed for medical use.

From the point of view of physics, these requirements are highly contradictory. “It is known that the dimensions of an effective antenna are proportional to radiation wave-length in the environment surrounding the antenna and they are approximately equal to its quarter, explains L. Lvova. Apparently, the antenna with the 2.45 GHz working frequency will possess the minimal dimensions. But electromagnetic radiation of this band highly attenuates in such a conducting medium as the living organism tissues. At the 400-450 MHz frequency, the dimensions of a traditional microstrip antenna, given contraction in the environment, will make approximately 6-7 centimeters, which is certainly too much.”

How to produce such a small but effective antenna? Apparently, the task comes down to modeling the antenna implanted in the human body, determining (via calculations or measurements) its efficiency and selecting the optimal antenna type, its geometry and materials. Is it within the capabilities of researchers from the Scientific Research Institute of Technical Physics to cope with this task? Neither the researchers nor experts of the International Science and Technology Center have doubts about that. On the one hand, development of the miniature antenna will involve leading specialists of the Federal State unitary Enterprise “Russian Federal Nuclear Center – Academician Zababakhin Scientific Research Institute of Technical Physics”, who have the 50-year experience of work in antenna engineering. On the other hand, the Institute has the necessary technical base: the anechoic room, the automated test bench for antenna measurements, production and technology base for antenna production.

There is required software both developed in-house and acquired one. The researchers already have a certain “backlog”, both theoretical and practical. All these components allow to hope for success, that a miniature antenna for cardiostimulators and other implanted devices will be produced in Ural - at the Scientific Research Institute of Technical Physics.

Nadezda Markina | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>