Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antennas Inside Us

20.03.2007
An exceptionally useful thing is being developed by the specialists of the Academician Zababakhin Scientific Research Institute of Technical Physics.

These are diminutive antennas intended for running in complicated conditions of a human organism. Such antennas will be able to provide uninterrupted radio communication between devices implanted in the patient’s organism (including cardiostimulators) and physicians. If the researchers manage to implement the intended concepts, this will make life of some patients much more comfortable, and lives of other patients will be saved.

The information about this development is available at the advanced research section of the International Science and Technology Center site (www.istc.ru).

“Recently, electronic devices for medical purposes, including various physiological sensors, insulinic pumps, cardiostimulators and defibrillators have become not simply small, but diminutive, says Lydia Lvova, senior staff scientist, Ph. D. (Engineering). Surgeons introduce the devices into the patient’s organism, and then they run absolutely independently – they watch the work of certain person’s organs or, as may be required, adjust their work according to the program. The information obtained through such a device can be in principle kept in a special storage module, and then analyzed – in case the patient’s condition has changed and the device is to be reprogramed accordingly.

Unfortunately, in the majority of cases, the device is to be extracted from the patient’s body, but this is not always possible. Moreover, the device becomes simply useless in the situation when urgent interference is needed but the program does not provide for this. It's quite another matter if the device operation could be managed remotely - by radio. Then the physician could not only get the information about the patient’s current health status straight from the remote console, but also take measures instantly in needed.”

Consequently, a miniature transmitter and a miniature combined antenna are needed. It turned out to be a complicated task to make a necessary antenna. In contrast to antennas, for example, in cellular phones, they will have to work not in the open air but in a complicated organism environment - roughly speaking, surrounded by blood, bones, muscles, etc., that is in the environment, which is transparent to far from all radio wave bands. And finally, the antenna should possess a sufficiently high electromagnetic energy-transfer coefficient – so that it used resource of energy source as efficiently as possible, thus providing maximum duration of continuous work. In other words, such antenna should be both small and sufficiently powerful – to “break through” the organism tissues and to bring the necessary information loss-free to the physician. It should be kept in mind, that not all frequencies are allowed for medical application – only the 402-405 MHz (MICS standard), 433-434 MHz or 2.45 GHz frequencies are allowed for medical use.

From the point of view of physics, these requirements are highly contradictory. “It is known that the dimensions of an effective antenna are proportional to radiation wave-length in the environment surrounding the antenna and they are approximately equal to its quarter, explains L. Lvova. Apparently, the antenna with the 2.45 GHz working frequency will possess the minimal dimensions. But electromagnetic radiation of this band highly attenuates in such a conducting medium as the living organism tissues. At the 400-450 MHz frequency, the dimensions of a traditional microstrip antenna, given contraction in the environment, will make approximately 6-7 centimeters, which is certainly too much.”

How to produce such a small but effective antenna? Apparently, the task comes down to modeling the antenna implanted in the human body, determining (via calculations or measurements) its efficiency and selecting the optimal antenna type, its geometry and materials. Is it within the capabilities of researchers from the Scientific Research Institute of Technical Physics to cope with this task? Neither the researchers nor experts of the International Science and Technology Center have doubts about that. On the one hand, development of the miniature antenna will involve leading specialists of the Federal State unitary Enterprise “Russian Federal Nuclear Center – Academician Zababakhin Scientific Research Institute of Technical Physics”, who have the 50-year experience of work in antenna engineering. On the other hand, the Institute has the necessary technical base: the anechoic room, the automated test bench for antenna measurements, production and technology base for antenna production.

There is required software both developed in-house and acquired one. The researchers already have a certain “backlog”, both theoretical and practical. All these components allow to hope for success, that a miniature antenna for cardiostimulators and other implanted devices will be produced in Ural - at the Scientific Research Institute of Technical Physics.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru
http://www.istc.ru

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>