Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holographic images use shimmer to show cellular response to anticancer drug

08.03.2007
The response of tumors to anticancer drugs has been observed in real-time 3-D images using technology developed at Purdue University.The new digital holographic imaging system uses a laser and a charged couple device, or CCD, the same microchip used in household digital cameras, to see inside tumor cells. The device also may have applications in drug development and medical imaging.

"This is the first time holography has been used to study the effects of a drug on living tissue," said David D. Nolte, the Purdue professor of physics who leads the team. "We have moved beyond achieving a 3-D image to using that image for a direct physiological measure of what the drug is doing inside cancer cells. This provides valuable information about the effects of various doses of the drug and the time it takes each dose to become significantly effective."

The laser is gentle and does not harm living tissue, Nolte said. The cancer cells used for the research were grown independently in a bioreactor in the laboratory.

Holography uses the full spectrum of information available from light, more than what the human eye can detect, to create a 3-D image called a hologram. By shining a laser on both the object and directly on the CCD chip of the digital camera, the system screens the pattern of light reflected back from the object and allows the camera to record very detailed information, including depth and motion on a scale of microns, or 0.0001 centimeter.

The scattered light waves reflected back from the object come together at the camera's detector and form what is called "laser speckle." To the eye, this speckle appears as a random pattern of blotches of bright and dark, but the pattern changes if there is motion within the object.

"All living matter is in constant motion, and the laser speckle from a living object is constantly changing with that motion," Nolte said. "This was the key to the diagnostic ability of the technique. The image appears to shimmer with the motion inside the cell. As the anticancer drug works, there is less motion inside the cell and the shimmer effect is reduced. This can be seen right on the screen."

The findings of this National Science Foundation funded research was detailed in an oral presentation on Tuesday (March 6) at the American Physical Society Meeting in Denver, Colo. The team was selected from more than 7,000 submissions as one of 25 to present results at a meeting press conference. John Turek, a professor of basic medical sciences at Purdue, and Kwan Jeong, a graduate assistant, collaborated with Nolte on this work.

The team detects the motion of organelles inside cancer cells. Organelles are tiny specialized structures that perform internal cell functions and are a common target of anticancer drugs because they play a key role in the uncontrolled cell division that makes cancer lethal.

Colchicine, the anticancer drug studied by the group, limits the ability of organelles to travel throughout the cell and perform their functions. The drug disrupts the growth of microtubules, the highways of the internal cellular structure, and leaves organelles stuck at dead ends unable to move.

This reduction in motion translates to less shimmer in the image on the screen and can be quantitatively analyzed by a computer program, Nolte said.

"Let's say there are 1,000 organelles reflecting light; the exact pattern of the laser speckle is sensitive to each organelle's location," he said. "If one moves even one-half micron, then the pattern changes. It is highly dynamic and sensitive to changes."

In addition to the technology's sensitivity to motion, the field of view is unique because of its "dynamic range," the difference between the largest and smallest scale accessed.

"We can look at a fairly large section of the object, about a 30-micron-thick section of a 700-micron-thick tumor," Nolte said. "At the same time, we can retrieve information within the micron scale.

"Biologists currently have to look at things on the cellular level through microscopes. With this technology, we now can detect things on the cellular level and the tissue scale at the same time. In this case, the whole is greater than the sum of its parts. Tissue is more than just an accumulation of cells. It is a communication network in 3-D that behaves differently than 2-D cell cultures."

In addition to realizing the diagnostic applications of the shimmer, the group has simplified and reduced the cost of the system.

In 2002 Nolte's group was the first to use holography to produce images inside of tissue. The original technique used special semiconductor holographic film developed by the team as opposed to a CCD chip.

"At the time, the only way to capture the image was on this very expensive, very difficult to make film," Nolte said. "But the CCD cameras kept getting better and better and reached the point where we could make the transition from holographic film to the CCD."

Light waves have peaks and valleys that offer information about depth undetected by the human eye. By shining a second laser directly on the CCD chip, bright and dark fringes occur corresponding to the relationship of these peaks and valleys. These fringes, or interference patterns, can be recorded directly onto the camera.

"This extra laser light wave, called the reference wave, acts like a yardstick," Nolte said. "It provides depth information and measurement. It gives us the original image layered with the fringes and the specific locations of these fringes tell us about the 3-D structure of the object."

The team combines this holography technique with "laser ranging," a method similar to radar that measures the time it takes for a laser pulse to travel to an object and be reflected back.

"The holography gives us the peaks and valleys and detailed depth information, while the laser ranging allows us to control how deep we are looking," he said.

The team plans to make measurements of the cytoskeleton, the support structure of cells, and to further examine what types of motion influence the shimmer effect.

"What we have seen is just the tip of the iceberg," Nolte said.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Source: David Nolte, (765) 494-3013, nolte@physics.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>