Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique tracks traffic patterns of white blood cells

01.03.2007
Researchers at Mount Sinai School of Medicine have just developed an advanced imaging technique to capture the movement of the microdomains of leukocytes or white blood cells.

Microdomains are restricted areas on the surface of the cells in which receptors and signaling molecules accumulate during cell activation. Using digital multi-channel videomicroscopy, researchers were able to view white blood cell subsets and their forming microdomains in the vascular system in real time. In the upcoming March issue of Nature Methods, the new research displays the migration and inner workings of white blood cells in the small veins and bone marrow of mice.

"Intravital micropscopy (IVM) has contributed enormously to the recent mechanistic advances in leukocyte trafficking," wrote Mount Sinai School of Medicine researchers lead author Elaine Y. Chiang, Andres Hidalgo, Jungshan Chang and Paul S. Frenette of the Department of Medicine’s Immunobiology Center and Black Family Stem Cell Institute in New York. "Multichannel digital fluorescence videomicropscopy vastly improves on prior intravital observations of leukocyte behavior in vivo by allowing the near-simultaneous observation of cell surface markers and microdomains."

Researchers explored various mouse models including that of Sickle Cell disease which is a common inherited blood disorder in the United States, affecting 72,000 Americans according to the National Institutes of Health (NIH). Sickle Cell disease is a blood disorder that affects hemoglobin, a protein inside red blood cells that help carry oxygen throughout the body. Abnormal hemoglobin polymerizes, and red blood cells become sickle-shaped. Sickle-shaped red blood cells then clog blood vessels by sticking to white blood cells and depriving the body of needed oxygen.

Using this new imaging method, red blood cells in a mouse model of Sickle Cell disease were shown to interact specifically with neutrophils, a subset of inflammatory white blood cells. "The ease and rapidity of this method, and the abilty to combine it with current genetic labeling techniques will greatly aid investigations to elucidate in vivo imflammatory cell behavior, and provide a powerful tool for the development of therapeutics for these diseases," according to Mount Sinai researchers.

"Sickle cell anemia was the first disease characterized at the molecular level but there is still no treatment for the acute vascular occlusions which are the hallmark of the disease," said Mount Sinai researcher Dr. Paul S. Frenette. "In vivo imaging provides a window inside the body that allows us to see exactly which blood cells and which molecular constituents participate in the vascular occlusions. Advances in molecular imaging will likely lead to new targets for the treatment that will improve the life of patients afflicted by this terrible illness."

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>