Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New medical technique punches holes in cells, could treat tumors

14.02.2007
A large animal study has shown that certain microsecond electrical pulses can punch nanoscale holes in the membranes of target cells without harming tissue scaffolding, including that in the blood vessels - a potential breakthrough in minimally invasive surgical treatments of tumors.

The study on pigs, the first large animal trial for the irreversible electroporation (IRE) technique, is described in the February issue of the journal Technology in Cancer Research and Treatment. IRE was developed at the University of California, Berkeley, which holds a number of patents on the technology.

Boris Rubinsky holds an irreversible electroporation device that could soon be used for minimally invasive treatments of tumors in humans. (Bart Nagel photo)

"I've been working in this area of minimally invasive surgery for 30 years now," said Boris Rubinsky, UC Berkeley professor of bioengineering and mechanical engineering and lead author of the paper. "I truly think that this will be viewed as one of the most important advances in the treatment of tumors in years. I am very excited about the potential of this technique. It may have tremendous applications in many areas of medicine and surgery."

Rubinsky co-authored the paper with Dr. Gary Onik, director of surgical imaging at Florida Hospital Celebration Health. They founded Oncobionic two years ago to commercialize IRE. Oncobionic is in the process of being sold to AngioDynamics, a New York-based manufacturer of medical devices for minimally invasive surgery.

Rubinsky is currently on a leave of absence from UC Berkeley to help bring this technology to market. During his leave, he is heading the Center for Biomedical Engineering in the Service of Humanity and Society at Hebrew University of Jerusalem in Israel.

It was first reported in the early 1970s that the application to cells of very fast electrical pulses - in the microsecond and millisecond range - creates an electrical field that causes nanoscale pores to open in the cell membrane. But research since then has mainly focused on reversible electroporation, which uses voltages low enough to temporarily increase the cell membrane's permeability. The holes in the cell membrane created by reversible electroporation close up shortly after treatment, allowing the cell to survive.

"This concept of reversible electroporation really caught on in modern biotechnology, especially over the last decade," said Rubinsky. "It is used primarily to help get genes and drugs into cells. The field of irreversible electroporation was pretty much forgotten."

The researchers' work on irreversible electroporation is an outgrowth of studies done on a "bionic chip" that Rubinsky and his UC Berkeley students were developing. The bionic chip merged living cell tissue with electronic circuitry. In the course of understanding whether electroporation was successful, the researchers discovered a range of electrical current that would cause permanent damage to cell membranes without generating heat and thermal damage.

An electrode used for irreversible electroporation, which could soon be used to treat tumors in humans. (Image courtesy of Oncobionic Inc.)

Irreversible electroporation uses electrical pulses that are slightly longer and stronger than reversible electroporation. With IRE, the holes in the cell membrane do not reseal, causing the cell to lose its ability to maintain homeostasis and die.

The researchers say that IRE overcomes the limitations of current minimally invasive surgical techniques that use extreme heat, such as hyperthermia or radiofrequency, or extreme cold, such as cryosurgery, to destroy cells.

They point out that temperature damage to cells also causes structural damage to proteins and the surrounding connective tissue. For liver cancer, the bile duct is at risk for damage. For prostate cancer, the urethra and surrounding nerve tissue is often affected.

Electroporation, on the other hand, acts just on the cell membrane, leaving collagen fibers and other vascular tissue structures intact. The researchers said that leaving the tissue's "scaffolding" in place allows healthy cells to regrow far more quickly than if everything in the region was destroyed.

In the new study, the researchers set out to demonstrate that the IRE technique could produce reliable and predictable results in a large animal model. They performed the IRE surgical technique on 14 healthy female pigs under general anesthesia, using the same procedures as if the patients were human.

They used ultrasound imaging to guide the 18 gauge stainless steel electrodes to target areas in the pigs' livers. The researchers applied 2,500 volts in eight 100-microsecond pulses spaced 100 microseconds apart to create lesions in the livers. They found that the lesions were immediately apparent as dark spots on the ultrasound images, giving real-time feedback during the procedure. The livers were then examined 24 hours, three days, seven days and 14 days after surgery.

"All of the vessels, down to the microvasculature, remain intact with IRE treatment, so the healing process is amazing," said Onik, who performed the surgery for the study. "Where it might take a year for a cryosurgery lesion to resolve, IRE lesions resolved in two weeks. That has major implications in terms of monitoring what you're doing and knowing that the cancer has been killed."

Another chronic drawback of heat or cryo treatments for cancer is the difficulty in treating cells that are immediately adjacent to the blood vessels. Because blood maintains a relatively stable temperature, it actually transfers heat or cold away from a treatment area in an attempt to return the region to a normal temperature range. That means some cancerous cells might actually survive treatment.

"That counts for a lot of failures when treating liver cancers," said Onik. "With IRE, you can destroy cancerous cells right next to the blood vessels. It's a more complete treatment. In my clinical experience, this is about as good as it gets. We've been using other techniques for a long time. This provides significant improvements over other treatments."

Onik does sound a note of caution, however. "While we are obviously very excited about this advance in tumor ablation, we are in the early stages of our learning curve," he said. "Experience developing cryosurgical ablation has taught us that we undoubtedly have much more to learn, and there is always the potential for unexpected results."

Although the tissue in this study was healthy, the researchers found in a prior cell culture study that IRE effectively kills human liver cancer tissue.

The IRE technology was cleared for human use by the U.S. Food and Drug Administration in November 2006. Onik is scheduled to begin human clinical trials for IRE this summer.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>