Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Together, biological membranes prevail

30.01.2007
Researchers at the University of Illinois at Urbana-Champaign have developed a novel method to visualize the fusion of biological membranes at the single-event resolution

Observing the individual fusion events revealed an unprecedented detailed picture of membrane fusion, which was chronicled in one of the cover stories in the December 2006 issue of the journal Proceedings of National Academy of Sciences (PNAS).

"Undoubtedly, understanding the mechanisms of this basic life phenomenon is of great biological interest, and there have been extensive studies at the theoretical and experimental level to this end," stated Taekjip Ha, a professor of physics at Illinois and a Howard Hughes Medical Institute investigator. "Previous studies suggested various physical intermediates for the membrane fusion, but the limitations of the approaches at hand did not allow a solid consensus to be reached."

Compartmentalization in cells is achieved by lipid membranes. Membrane fusion is an elementary biological event which comes in various forms. From cellular trafficking to neuro-transmitter release, merging of two membranes is essential for carrying out vital processes of life. This important task is executed by membrane proteins called SNAREs. Complementary SNARE proteins residing within the incoming and target membranes form a bundle, and bring the two membranes close enough for the merging to occur. The fusion is thought to proceed through highly fleeting intermediates that are very difficult to study when many membrane fusion events are averaged over as has been done in most of previous studies.

Alternatively, the Illinois team, led by Ha, developed an elegant method which used fluorescence resonance energy transfer (FRET) technique to detect SNARE mediated membrane fusion. In FRET, a pair of green and red dyes is used where only the green dye can directly be excited by a laser. The red dye lights up if some of the energy from the green dye hops over to the red dye which becomes increasingly efficient at short distances. Their team prepared two different batches of SNARE-decorated vesicles, one with the green dyes and the other red dyes, and observed them using highly sensitive fluorescence microscopy.

The vesicles with the red dyes were then specifically immobilized on a polymer-passivated glass surface. The polymer coating acted as a cushion and prevented the non-specific binding of vesicles on the surface. As the green labeled vesicles were injected into the flow chamber, the vesicles could fuse upon SNARE-SNARE interaction. The merging of the two membranes result in mixing of the dyes and the level of mixing is reflected as changes in the FRET signal. Using this approach, the researchers could obtain real-time movies of fusion events single vesicles and uncovered various intermediates and pathways during the fusion reaction. The different fates of liposomes subsequent to fusion were also dissected at the level of single-fusion events. The results of the study was highlighted by a commentary in the same issue of the journal PNAS and by a "News and Views" article in the January issue of Nature Structural and Molecular Biology.

The new single-vesicle approach to study membrane fusion, developed by postdoctoral associate Tae-Young Yoon and graduate student Burak Okumus, opens not only a new avenue for the SNARE field, but also provides a native-like environment for the single molecule studies of membrane proteins which would fill a gap in the researchers' toolkit. The work was done in collaboration with Fan Zhang and Professor Yeon-Kyun Shin of Iowa State University and was funded by grants from the National Institute of General Medical Sciences. The research team is currently working on the neuronal SNAREs hoping to shed new light on the membrane fusion events essential for brain functioning.

Richard Kubetz | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>