Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading European experts in magnetic resonance for animals

12.01.2007
The UAB SeRMN is enlarging its facilities to make room for two new cutting-edge machines for nuclear magnetic resonance (NMR).

The devices are a Bruker BIOSPEC 70/30 spectrometer with a horizontal magnet, making it possible to carry out magnetic resonance spectroscopy imaging in vivo on animals (from mice to rabbits), and an NMR Bruker AvanceII 600 spectrometer combined with a high-resolution liquid chromatography team and a mass spectrometer. Both pieces of equipment will have various applications, especially in the field of biomedical research. In total, the UAB has invested €3 million in the equipment purchased and the work carried out to make room for it.

The BIOSPEC 70/30 spectrometer and the AvanceII 600 LC-NMR/MS cost approximately €1.5 million and €900,000 respectively, and were funded between the European Regional Development Fund (ERDF, project UNAB05-33-008), the Spanish Ministry of Education and Science (PCT-020400-2005-19 and PCT-010000-2006-14), the Catalan Government and the University itself. The facilities needed to be enlarged to accommodate the new equipment, and this was funded entirely by the UAB. The work is expected to be completed by May 2007, with the equipment being installed in June.

The BIOSPEC 70/30 is very similar to magnetic resonance equipment used for clinical purposes, and makes it possible to carry out magnetic resonance imaging and spectroscopy on small animals. This will be the first equipment of its kind in Catalonia and the third in Spain. The equipment at the UAB will include an ultra-shielded and refrigerated superconducting magnet with a 30cm bore diameter and new-generation electronics with more powerful amplifiers, steeper gradients and double synthesising waves. The BIOSPEC 70/30 will be set up for a wide variety of experiments for the detection of different nuclei, and will make it possible to obtain high-resolution and high-quality images. Because of the equipment's sensitivity, it will be set up inside a Faraday cage to protect it from external electromagnetic interference.

The AvanceII 600 LC-NMR/MS is aimed more towards basic research. It will be the first equipment in Spain to combine integrally magnetic resonance techniques, liquid chromatography and mass spectrometry. It will include an ultra-shielded and superconducting 14-tesla magnet and new-generation electronics. The liquid chromatograph to which it will be joined will separate the samples into different fractions, and these will then be analysed using a mass spectrometer and the NMR spectrometer.

This easy-to-upgrade equipment has many applications and will be very useful for biomedical research. The BIOSPEC 70/30 will, for example, enable researchers to advance their research into cancer, neurological diseases, diabetes, and other metabolic conditions and disorders through MR studies on animal models. Obviously it will also be possible to study plants used in agrigenomics. Furthermore, the AvanceII 600 LC-NMR/MS spectrometer will make it possible to work with libraries of compounds for pharmacological applications and to analyse liquid samples in the field of proteomics and metabonomics (analysing changes in the metabolism of animals to diagnose diseases earlier and more accurately), as well as food samples.

Since it was opened in 1982, the SeRMN has served the UAB research community and any external users from other research institutions and businesses.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>