Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading European experts in magnetic resonance for animals

12.01.2007
The UAB SeRMN is enlarging its facilities to make room for two new cutting-edge machines for nuclear magnetic resonance (NMR).

The devices are a Bruker BIOSPEC 70/30 spectrometer with a horizontal magnet, making it possible to carry out magnetic resonance spectroscopy imaging in vivo on animals (from mice to rabbits), and an NMR Bruker AvanceII 600 spectrometer combined with a high-resolution liquid chromatography team and a mass spectrometer. Both pieces of equipment will have various applications, especially in the field of biomedical research. In total, the UAB has invested €3 million in the equipment purchased and the work carried out to make room for it.

The BIOSPEC 70/30 spectrometer and the AvanceII 600 LC-NMR/MS cost approximately €1.5 million and €900,000 respectively, and were funded between the European Regional Development Fund (ERDF, project UNAB05-33-008), the Spanish Ministry of Education and Science (PCT-020400-2005-19 and PCT-010000-2006-14), the Catalan Government and the University itself. The facilities needed to be enlarged to accommodate the new equipment, and this was funded entirely by the UAB. The work is expected to be completed by May 2007, with the equipment being installed in June.

The BIOSPEC 70/30 is very similar to magnetic resonance equipment used for clinical purposes, and makes it possible to carry out magnetic resonance imaging and spectroscopy on small animals. This will be the first equipment of its kind in Catalonia and the third in Spain. The equipment at the UAB will include an ultra-shielded and refrigerated superconducting magnet with a 30cm bore diameter and new-generation electronics with more powerful amplifiers, steeper gradients and double synthesising waves. The BIOSPEC 70/30 will be set up for a wide variety of experiments for the detection of different nuclei, and will make it possible to obtain high-resolution and high-quality images. Because of the equipment's sensitivity, it will be set up inside a Faraday cage to protect it from external electromagnetic interference.

The AvanceII 600 LC-NMR/MS is aimed more towards basic research. It will be the first equipment in Spain to combine integrally magnetic resonance techniques, liquid chromatography and mass spectrometry. It will include an ultra-shielded and superconducting 14-tesla magnet and new-generation electronics. The liquid chromatograph to which it will be joined will separate the samples into different fractions, and these will then be analysed using a mass spectrometer and the NMR spectrometer.

This easy-to-upgrade equipment has many applications and will be very useful for biomedical research. The BIOSPEC 70/30 will, for example, enable researchers to advance their research into cancer, neurological diseases, diabetes, and other metabolic conditions and disorders through MR studies on animal models. Obviously it will also be possible to study plants used in agrigenomics. Furthermore, the AvanceII 600 LC-NMR/MS spectrometer will make it possible to work with libraries of compounds for pharmacological applications and to analyse liquid samples in the field of proteomics and metabonomics (analysing changes in the metabolism of animals to diagnose diseases earlier and more accurately), as well as food samples.

Since it was opened in 1982, the SeRMN has served the UAB research community and any external users from other research institutions and businesses.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>