Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise-Immune Stethoscope Helps Medics Hear Vital Signs in Loud Environments

30.11.2006
Ultrasound-Based Design Benefits Wounded Soldiers Transported in Helicopters

A new type of stethoscope enables doctors to hear the sounds of the body in extremely loud situations, such as during the transportation of wounded soldiers in Blackhawk helicopters. Using ultrasound technology, the kind used to generate images of internal organs, muscles and unborn fetuses, the new stethoscope design will be presented later this week at the Fourth Joint Meeting of the Acoustical Society of American and the Acoustical Society of Japan, which will be held at the Sheraton Waikiki and Royal Hawaiian Hotels in Honolulu, Hawaii.

Researchers at Active Signal Technologies, Inc., of Linthicum Heights, Md., in collaboration with the U.S. Army Aeromedical Research Laboratory (USAARL) in Fort Rucker, Ala., have developed an ultrasound stethoscope that is nearly impervious to loud noise and is capable of making accurate readings at noise levels up to 120 decibels, similar to the volume experienced at the front row of a rock concert.

Current acoustic stethoscope technology picks up and amplifies vibrations that let doctors hear the heart and lungs. These models become difficult to use effectively around 80 decibels, a noise level comparable to an alarm clock or a busy city street. When noise levels reach 90 decibels, these types of stethoscopes are rendered useless. Modern electronic stethoscopes have raised the maximum tolerable noise level to 90 decibels to 95 decibels by replacing the ear pieces with loudspeaker inserts that provide a better seal with the ear canal and replacing the tubing with electrical cables that do not pick up acoustic noise.

The challenge to build a better stethoscope originated from the Army's Small Business Innovation Research program. For soldiers wounded in combat, the first hour after sustaining an injury is known as the "critical hour," when diagnoses and emergency treatment must take place to give them the best chance of recovery. These soldiers are often transported by helicopter, where noise levels prohibit the use of traditional stethoscopes. Auscultation, the act of listening to sounds within the body as a method of diagnosis, is an important tool for assessing the integrity of the heart muscle, valves and major arteries. Auscultation of the lungs can be essential when confirming the placement of endotracheal tubes to restore or protect the airway or when diagnosing conditions such as a collapsed lung, asthma or pulmonary edema.

Houtsma said he is proud of what the research teams were able to accomplish.

"Having heard so much about the first critical hour that may mean life or death for a seriously injured person, I feel fortunate to have been in a position to lead a great team of dedicated researchers in enabling medical auscultation in very noisy environments," Houtsma said. "I expect this invention to save many lives that otherwise might have been lost."

Active Signal Technologies was awarded grants from the Army totaling $900,000 and another $50,000 from the state of Maryland to develop a new type of stethoscope that could be used in high-noise situations. After several unsuccessful attempts to reach the goal of effectiveness at 110 decibels, the idea of using ultrasound technology was implemented.

Traditional stethoscopes transmit and amplify sound that is within the range of human hearing, from about 20 hertz to 20,000 hertz. Most audible sound, including that of the heart and lungs, takes place at around 100 hertz to 200 hertz. The ultrasound models transmit a sound signal at 2.3 megahertz into the patient's body, according to USAARL stethoscope project team leader Adrian Houtsma. This sound is reflected back to the stethoscope at a slightly different frequency because of the velocity of the internal organs. This is called the Doppler effect. The difference in frequencies between the sound wave that is transmitted and the sound wave that is received can be computed to determine the motion of the internal organs. This difference frequency is then converted into audible sound. Because they are based on different physical principles than conventional stethoscopes, ultrasound models produce a markedly different sound. Where an acoustic stethoscope yields a "lub-dub" sound from a heartbeat, with the first beat being the strongest, an ultrasound stethoscope will yield a "ta-da-ta" pattern, with the second beat being the strongest.

The ultrasound stethoscopes are almost ready to begin the process of FDA approval, which is likely to take two to three months. Then Active Signal Technologies will begin manufacturing the devices to sell to the armed forces. The company's chief executive officer, Arthur Cooke, said the commercial release of the stethoscopes will likely be very small at first, since the cost could be anywhere between $250 and $700. He said he hopes positive feedback from the armed forces will generate widespread interest.

"Once these are seen and implemented," Cooke said, "there will be more commercial interest."

Turner Brinton | EurekAlert!
Further information:
http://www.aip.org
http://www.acoustics.org/press/152nd/houtsma.html

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>