Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical technique provides improved 'virtual biopsies' of internal surfaces

21.11.2006
Applications may include scanning for gastrointestinal tumors, vulnerable coronary plaques

A new optical imaging technique, developed at the Wellman Center for Photomedicine at Massachusetts General Hospital (MGH), can provide three-dimensional microscopic views of the inner surfaces of blood vessels and gastrointestinal organs.

In their report in the journal Nature Medicine, receiving early online release today, the MGH-Wellman researchers describe using optical frequency-domain imaging (OFDI) to visualize broad areas of the esophagus and coronary arteries of living pigs. The technique is an advance over optical coherence tomography (OCT) – another noninvasive MGH-developed technology that details much smaller areas – and could be useful for identifying precancerous lesions and dangerous deposits of plaque in the coronary arteries.

"For diagnosing early-stage disease, the clinician has been basically looking for a needle in a haystack; so sampling only a few microscopic points of an organ, as we could with OCT, is clearly not sufficient," says Brett Bouma, PhD, of the MGH-Wellman Center, the report's senior author. "With OFDI, we can now perform microscopy throughout very large volumes of tissue without missing any locations."

While OCT can examine surfaces one point at a time, OFDI is able to look at over 1,000 points simultaneously by using a new type of laser developed at MGH-Wellman. Inside the fiberoptic catheter probe, a constantly rotating laser tip emits a light beam with an ever-changing wavelength. Measuring how each wavelength is reflected back, as the probe moves through the structure to be imaged, allows rapid acquisition of the data required to create the detailed microscopic images.

In the Nature Medicine paper, the MGH-Wellman team reports that OFDI successfully imaged the inner esophageal surfaces of living pigs, revealing the structural details and vascular networks of 4.5-centimeter-long segments with less than 6 minutes scanning time. Scans of coronary artery surfaces were similarly successful, producing three-dimensional microscopic images of the surfaces of segments 24 to 63 millimeters long. An experiment designed to evaluate OFDI's ability to detect damage to arterial surfaces confirmed that the technique could differentiate between healthy and damaged tissue.

Among potential applications for OFDI could be diagnosis of Barrett's esophagus, a precursor to esophageal cancer that can be identified with OCT, provided the affected tissue is scanned. The researchers estimate that the esophageal scan conducted in this study could be reduced from 6 minutes to less than 1 with more powerful computer processing. Another major application would be examining coronary arteries for the vulnerable plaques believed most likely to rupture and produce heart attacks. A 2005 study from the MGH Cardiology Division found that OCT could identify vulnerable plaques in symptomatic patients, and the OCT-developed scanning criteria could be used with OFDI to further study the vulnerable plaque hypothesis and potentially to diagnose dangerous plaques and guide their treatment.

The MGH-Wellman researchers also anticipate extending the technology's capabilities into other fields. "One of the most exciting concepts would be to directly link OFDI with the delivery of therapy, such as laser treatment for early cancer," says Bouma. "Our hope is that, thorough one minimally invasive probe, clinicians will be able to diagnose and precisely treat diseased tissue while sparing adjacent healthy tissue." Bouma is an associate professor of Dermatology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>