Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant reduction in blood pressure with implantable device system

17.11.2006
A device first implanted in the United States at the University of Rochester Medical Center as part of a clinical trial is showing a significant reduction in blood pressure in patients who suffer from severe hypertension and cannot control their condition with medications or lifestyle changes.

Early findings were shared this week by University of Rochester Medical Center cardiologist John Bisognano, M.D., Ph.D., and Minneapolis-based device-maker CVRx at the American Heart Association 2006 Scientific Sessions in Chicago.

The ongoing study is assessing the safety and clinical efficacy of the RheosTM Baroreflex Hypertension TherapyTM System, an implantable device for the treatment of hypertension in patients with drug-resistant hypertension, who have a systolic blood pressure of 160 mmHg or greater. The University of Rochester implanted the first device in the U.S. in March 2005, and performed a total of three of the initial 10 implantations.

Hypertension affects about 65 million people in the U.S. It is estimated to cause one in every eight deaths worldwide. Each increase of 20 mmHg in systolic blood pressure or 10 mmHg in diastolic blood pressure above normal level is associated with a two-fold increase in death rates from stroke, coronary heart disease and other vascular causes. Approximately 25 percent of people with hypertension cannot control their high blood pressure, despite the use of multiple medications.

"The Rheos System is a novel device that activates the carotid baroreflex, the body's own system for regulating blood pressure," Bisognano said. "We are pleased with the clinical results to date and look forward to expanding the clinical evaluation of the Rheos System. New approaches to the widespread, chronic and costly problem of hypertension are needed. The Rheos System has the potential to prevent the progression to more serious illnesses, including heart and kidney disease, stroke and death."

The system works by electrically activating the baroreflex system based in the carotid arteries in the neck. Low-level electrical stimulation to this area sends signals to the brain, "telling" it to take action to lower blood pressure through a variety of mechanisms, including blood vessel dilatation, heart rate reduction and promotion of fluid excretion by the kidneys. In this way, the system provides a physiologic approach to reducing high blood pressure by allowing the brain to direct the body's own control mechanisms. It consists of a battery-powered implantable generator, which is inserted under the skin near the collarbone, and two carotid sinus leads, which run from the generator to the left and right carotid sinus in the neck. While implantation is slightly more involved, the general principle is similar to the implantation of cardiac pacemakers.

The trial is designed to assess device safety and efficacy in patients with systolic blood pressure of 160 mmHg or greater, despite being on at least three anti-hypertension medications, including one diuretic. The presentation reported on the first 10 U.S. patients enrolled in the trial. After one month of surgical recovery, baseline blood pressure was assessed and the device was activated. Three months of active Rheos therapy reduced systolic blood pressure by an average of 22 mmHg (180 mmHg vs. 158 mmHg) and diastolic blood pressure by an average of 18 mmHg (105 mmHg vs. 87 mmHg), using office cuff measurements. The implants were well tolerated and there were no unanticipated serious adverse events related to the system or procedure.

In October, CVRx received a conditional investigational device exemption (IDE) approval from the U.S. Food and Drug Administration to begin a pivotal clinical trial that will evaluate the safety and effectiveness of the RheosTM Baroreflex Hypertension TherapyTM System in a much larger number of patients. The University of Rochester team recently implanted a fourth device as part of the study.

"These interim clinical results are favorable and promising for the many people with drug-resistant hypertension," said Nadim Yared, president and CEO of CVRx. "We are excited about launching our pivotal trial and look forward to working with our investigators."

Karin Christensen | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>