Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-dimensional, miniature endoscope opens new diagnostic possibilities

20.10.2006
New approach with single optical fiber may give access to currently unreachable areas

Massachusetts General Hospital (MGH) researchers have developed a new type of miniature endoscope that produces three-dimensional, high-definition images, which may greatly expand the application of minimally invasive diagnostic and therapeutic procedures. In the October 19 issue of Nature, the team from the Wellman Center for Photomedicine at MGH describes their prototype device and a demonstration of its use in a mouse model.


The spectral encoded miniature endoscope uses micro optics and a single optical fiber to project various colors of light onto different portions of the subject. The light reflected back into the endoscope is measured and analyzed to produce a three-dimensional image. This illustration shows a time exposure of white light transmitted through the miniature endoscope, superimposed on a three-dimensional rendering of mouse metastatic ovarian tumor nodules obtained with this new technique. Credit: Wellman Center for Photomedicine, Massachusetts General Hospital

"This new ultraminiature endoscope is the first to allow three-dimensional imaging of areas inside the body," says Guillermo Tearney, MD, PhD, of the MGH Wellman Center, the report's senior author. "Its ability to go places that other imaging tools cannot reach opens new possibilities for medical diagnosis and eventually treatment."

Standard miniature endoscopic devices – which give physicians access to hard-to-reach internal organs and structures – utilize bundles of optical fibers to supply light to and transmit images from the areas of interest. Larger endoscopes that use image sensors to produce high-quality, two-dimensional images can be a centimeter or more in diameter. Existing miniature endoscopes using smaller fiber bundles may be more flexible but have difficulty producing high-quality images.

The new device developed at MGH-Wellman uses a technology called spectrally encoded endoscopy (SEE). Multicolored light from a single optical fiber – introduced through a probe about the size of a human hair – is broken into its component colors and projected onto tissue, with each color illuminating a different part of the tissue surface. The light reflected back is recorded, and the intensity of the various colors decoded by a spectrometer, which analyzes the wavelengths of light. Another device called an interferometer, which calculates structural information based on the interaction between two waves of light, provides the data required to create three-dimensional images.

To demonstrate the device's application in a live animal, the researchers used the system to image metastatic ovarian tumors on the abdominal wall of a mouse. The SEE probe was passed into the abdominal cavity through a fine-gauge needle. The resulting three-dimensional image showed several raised areas of tumor nodules, the presence of which was confirmed by histologic analysis of the tissue.

"The most important feature of this new endoscope is the ability to obtain three-dimensional images, something we don't believe is offered by any commercially available miniature endoscope system," says Dvir Yelin, PhD, first author of the Nature paper. "While the image resolution we achieved in this demonstration is similar to existing small-diameter endoscopes, with further optimization of the optics it is possible to obtain images with 10 times the number of pixels provided by other miniature endoscopes."

"This new technology will offer physicians and surgeons the capability to bring many more procedures into outpatient settings, reduce anesthesia requirements and minimize tissue damage," Tearney adds. "The device's size and flexibility should allow safer navigation through such delicate structures as the salivary ducts, the fallopian tubes and the pancreatic duct. Fetal and pediatric procedures may also benefit from this tool. Eventually, SEE could give rise to new procedures that permit diagnosis and microsurgery in previously inaccessible areas of the body."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>