Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Three-dimensional, miniature endoscope opens new diagnostic possibilities

New approach with single optical fiber may give access to currently unreachable areas

Massachusetts General Hospital (MGH) researchers have developed a new type of miniature endoscope that produces three-dimensional, high-definition images, which may greatly expand the application of minimally invasive diagnostic and therapeutic procedures. In the October 19 issue of Nature, the team from the Wellman Center for Photomedicine at MGH describes their prototype device and a demonstration of its use in a mouse model.

The spectral encoded miniature endoscope uses micro optics and a single optical fiber to project various colors of light onto different portions of the subject. The light reflected back into the endoscope is measured and analyzed to produce a three-dimensional image. This illustration shows a time exposure of white light transmitted through the miniature endoscope, superimposed on a three-dimensional rendering of mouse metastatic ovarian tumor nodules obtained with this new technique. Credit: Wellman Center for Photomedicine, Massachusetts General Hospital

"This new ultraminiature endoscope is the first to allow three-dimensional imaging of areas inside the body," says Guillermo Tearney, MD, PhD, of the MGH Wellman Center, the report's senior author. "Its ability to go places that other imaging tools cannot reach opens new possibilities for medical diagnosis and eventually treatment."

Standard miniature endoscopic devices – which give physicians access to hard-to-reach internal organs and structures – utilize bundles of optical fibers to supply light to and transmit images from the areas of interest. Larger endoscopes that use image sensors to produce high-quality, two-dimensional images can be a centimeter or more in diameter. Existing miniature endoscopes using smaller fiber bundles may be more flexible but have difficulty producing high-quality images.

The new device developed at MGH-Wellman uses a technology called spectrally encoded endoscopy (SEE). Multicolored light from a single optical fiber – introduced through a probe about the size of a human hair – is broken into its component colors and projected onto tissue, with each color illuminating a different part of the tissue surface. The light reflected back is recorded, and the intensity of the various colors decoded by a spectrometer, which analyzes the wavelengths of light. Another device called an interferometer, which calculates structural information based on the interaction between two waves of light, provides the data required to create three-dimensional images.

To demonstrate the device's application in a live animal, the researchers used the system to image metastatic ovarian tumors on the abdominal wall of a mouse. The SEE probe was passed into the abdominal cavity through a fine-gauge needle. The resulting three-dimensional image showed several raised areas of tumor nodules, the presence of which was confirmed by histologic analysis of the tissue.

"The most important feature of this new endoscope is the ability to obtain three-dimensional images, something we don't believe is offered by any commercially available miniature endoscope system," says Dvir Yelin, PhD, first author of the Nature paper. "While the image resolution we achieved in this demonstration is similar to existing small-diameter endoscopes, with further optimization of the optics it is possible to obtain images with 10 times the number of pixels provided by other miniature endoscopes."

"This new technology will offer physicians and surgeons the capability to bring many more procedures into outpatient settings, reduce anesthesia requirements and minimize tissue damage," Tearney adds. "The device's size and flexibility should allow safer navigation through such delicate structures as the salivary ducts, the fallopian tubes and the pancreatic duct. Fetal and pediatric procedures may also benefit from this tool. Eventually, SEE could give rise to new procedures that permit diagnosis and microsurgery in previously inaccessible areas of the body."

Sue McGreevey | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>