Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could lead to dramatic improvement in scanning for serious diseases

27.09.2006
A new £850,000 project begins next month (October) that could lead to a dramatically improved understanding of serious illnesses such as heart disease, stroke, diabetes, septic shock and cancer.

During the four-year project a team of scientists, engineers and mathematicians at the University of Bath will undertake a fundamental revision of electron spin resonance imaging, a technique for body scanning.

They hope that electron spin resonance imaging will eventually take a three-dimensional “snapshot” image of the chemical state of an organ such as the heart. This would be an immensely important advance, and could lead to new treatments for serious illnesses.

At present instruments do not have the sensitivity or speed to do this but using the latest research into measurement techniques and data analysis could improve the sensitivity of the machinery by 100 times or more. This could, in turn, allow some images to be recorded 10,000 times faster, or with 10,000 times more spatial information.

Even relatively modest improvements in the technical performance of electron spin resonance imaging instruments are potentially very important to medical research scientists.

The Bath team will be working closely with two such experts at the University of the West of England, Bristol and Cardiff Medical School to develop the new technologies.

Electron spin resonance imaging instruments work in a similar way to magnetic resonance imaging (MRI) body scanners that are already widely used in hospitals. However, whereas MRI scanners use the magnetic properties of the protons in water to generate an image, electron spin resonance instruments use the magnetic properties of electrons.

This fundamental difference makes electron spin resonance more suited to imaging chemical processes than MRI. However, it also makes it technically much more difficult, and has so far restricted its use to the research laboratory.

The project’s initiator, Dr Stephen Bingham, of the University of Bath’s Department of Physics, said: “The enormous potential of electron spin resonance imaging has been recognised in the scientific community for some time - however, this promise remains largely unrealised.

“The substantial improvement in performance that is necessary will not come from tinkering with current technology, so our task is to bring fresh thinking to this problem. We will be adapting several technologies that have been developed in other fields of science and engineering and applying them to electron spin resonance imaging for the first time.”

Dr Bingham is working with Dr Daniel Wolverson and Professor John Davies in the Department of Physics, with Professor Dave Rodger and Dr Chris Clarke of the Department of Electronic & Electrical Engineering, and with the mathematician Professor Chris Jennison, Dean of the Faculty of Science. They are working with the University’s Research & Innovation Services to ensure the future wide availability of the technology through its commercialisation. Biomedical evaluation will be done in collaboration with Professor Simon Jackson, at the Centre for Research in Biomedicine, University of the West of England, Bristol, and Dr Philip James of the Wales Heart Research Institute, Cardiff University.

The project is funded by the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/articles/research/electronspin270906.html

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>