Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of using nanotube x-rays creates CT images faster than traditional scanners

07.08.2006
Scientists at the University of North Carolina at Chapel Hill have developed a new method to create computed tomography (CT) images using carbon nanotube x-rays that works much faster than traditional scanners and uses less peak power.

The work is another step toward developing scanners for medical imaging and homeland security that are smaller, faster, and less expensive to operate, said Dr. Otto Zhou, Lyle Jones Distinguished Professor of Materials Science, in the curriculum in applied and materials sciences and the department of physics and astronomy, both in UNC's College of Arts and Sciences.

"The current CT scanners take images sequentially, which is slow and inefficient. Using the nanotube x-ray technology, we show in this paper the feasibility of multiplexing - taking multiple images at the same time," Zhou said.

Carbon nanotubes, made of layers of carbon atoms, can be as small as one nanometer - one billionth of a meter - in diameter. The UNC team uses them in this work because they can emit electrons without high heat.

The new development is published in the current edition of the journal Applied Physics Letters. The lead author of the paper is Dr. Jian Zhang, a postdoctoral research associate in the UNC School of Medicine's department of radiation oncology. In addition to Zhou, other authors - all from UNC - are Dr. Sha Chang, associate professor of radiation oncology; doctoral candidate Guan Yang and Dr. Jianping Lu, professor of condensed matter physics, both of the department of physics and astronomy; and Dr. Yueh Lee, an intern at the medical school and an adjunct assistant professor in physics and astronomy.

Traditional CT scanners use a single x-ray source that takes approximately 1,000 images from multiple angles by mechanically rotating either the x-ray source or the object being scanned at high speed.

In 2005, Zhou and colleagues created a scanner with multiple x-ray sources, called a multipixel scanner. The machine required no mechanical motion but switched rapidly among many x-ray sources, each taking an image of the object from a different angle in fast succession.

The team's newest innovation combines this multiple-x-ray-source innovation with a principle called multiplexing, in which all the x-ray sources are turned on simultaneously to capture images from multiple views at the same time.

"Let's take a simple case where suppose you need 10 images," Zhou said. "Let's say each view take one second. In the conventional step-and-shoot method used for the current CT scanners, you take one shot, and the first pixel stays on for one second. Then we turn on the second pixel, and that stays on for one second." The whole process would take 10 seconds.

"With multiplexing, we can have all the x-ray pixels on at the same time for maybe 2 seconds. You still get all the images, only faster, and we need only about half of the original x-ray peak power," Zhou said.

Multiplexing is a known concept used by, for instance, cellular phones. Millions of cell phone signals travel along the same frequency band, then are separated into coherent messages at their destinations.

"What makes the multiplexing CT scanning possible is the novel multi-pixel x-ray source we developed and the ability to program each x-ray pixel electronically," Zhou said.

In this study, Zhou and colleagues took images of a computer circuit board using a prototype multiplexing scanner, then compared the images to those generated by a traditional x-ray scanner. The images showed little difference in resolution or clarity, but the prototype multiplexing scanner got the job done faster.

"For this paper we built a prototype or demonstration scanner that gives a limited number of views, to image a simple object," Zhou said. "Our next step is to develop a small CT scanner for small animal imaging."

The work was funded by the National Cancer Institute (through the Carolina Center of Cancer Nanotechnology Excellence) and the National Institute of Biomedical Imaging and Bioengineering (both part of the National Institutes of Health); the Transportation Security Administration; and Xintek, Inc.

Clinton Colmenares | EurekAlert!
Further information:
http://www.unc.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>