Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University ‘spin-out’ to revolutionise biomedical optics

Kent Enterprise and the School of Physical Sciences at the University of Kent have ‘spun out’ a high-tech company that is set to revolutionise biomedical optics.

Optopod Ltd, the brainchild of Adrian Podoleanu, Professor of Biomedical Optics and Head of the Applied Optics Group in the School of Physical Sciences, has developed a technique based on optical coherence tomography (OCT) that has proved successful in non-destructive imaging of superficial tissue.

Optopod’s new technology has the great advantage that it is non-invasive and provides high-depth resolution, enabling safe application to different types of tissue – such as skin, teeth, gum, internal vessel walls and hair – and burns. The technology is also finding applications in biology and art conservation, with one recent experiment, conducted in association with the British Museum and the National Gallery, London, enabling scientists, conservationists and art historians to observe not only the structure of the varnish layer on a painting but also the different layers of paint and preparatory drawings beneath those layers. The technique is evolving rapidly and the University has applied for several patents to protect the technology.

Carole Barron, Director of Kent Enterprise said, ‘Optopod Ltd, the second company that we have ‘spun out’ from the University of Kent within the last six months, consolidates our mission to commercially develop the University’s intellectual property and world-class research.’

Karl Heeks, the University’s technology transfer consultant who brokered the ‘spin-out’ said, ‘Professor Podoleanu’s international reputation in the area of biomedical optics and his well established commercial relationships have increased the likelihood of success for this exciting and revolutionary venture.’

Kent Enterprise is building very strong foundations in its technology transfer portfolio in a range of disciplines to enable future exploitation for the benefit of the University, its staff and the wider community.

Karen Baxter | alfa
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>