Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technique quickly builds 3-D images of knees

31.07.2006
A faster magnetic resonance imaging (MRI) data-acquisition technique will cut the time many patients spend in a cramped magnetic resonance scanner, yet deliver more precise 3-D images of their bodies.

Developed at the University of Wisconsin-Madison, the faster technique will enable clinics to image more patients - particularly the burgeoning group of older adults with osteoarthritis-related knee problems - and can help researchers more rapidly assess new treatments for such conditions.

Magnetic resonance has long been touted as the ideal method for capturing 3-D images of the human body. "But unfortunately, it is kind of a slow technique," says Walter Block, an associate professor of biomedical engineering and medical physics. "You can only sample a few pieces of information needed to build the image at a time."

Consequently, most magnetic resonance technicians acquire images as a series of 2-D slices, which yield high resolution in a single plane and poor resolution in the remaining direction, he says.

To capture an image, a magnetic resonance scanner commonly conducts hundreds to thousands of little "experiments," or encodings, that help to make up the big picture. Block's data-acquisition technique capitalizes on recent magnetic resonance hardware advances that, coupled with a novel way of maintaining a high-level magnetic resonance signal throughout the scan, will speed an MRI session. "But to maintain the high-level signal," he says," you need to be able to complete each of these smaller encodings within a couple of milliseconds."

Rather than using the conventional approach, which sweeps horizontally to gather magnetic resonance data, Block's technique acquires the body's signals radially, in a way that looks somewhat like a toy Koosh ball. "We can essentially acquire data during the whole experiment, where in the (conventional) case, a lot of time was spent either prepping for the experiment or returning it to the steady state so that you could do the next experiment," Block says. "What we're doing now is capable of a study that you can visualize in any plane in about the same time as people are doing one plane."

For example, when imaging a joint like the knee - Block's inspiration for developing the new technique - suppressing the fat signal in bone provides image contrast between bone and the cartilage surface. The conventional data-acquisition method would spend half its scan time suppressing the signal from fat, instead of imaging cartilage. However, Block's technique exploits the difference in resonant frequencies between fat and water. During the scan time, then, the technique maximizes each component of the image, so that a technician can view any aspect.

High-resolution 3-D images are important not only from diagnostic and clinical standpoints, but also to help patients better understand their health conditions, says Block. "If you could actually look at a 3-D model from different perspectives, you'd have a much better chance to make sense of the pain you're feeling, your doctor's diagnosis and your treatment options," he says.

The technique, which Block patented through the Wisconsin Alumni Research Foundation, also will make it easier to image parts of the body, such as the heart or abdomen, in which motion is a factor.

In related research, Block also has developed an algorithm that, within less than a second, can calibrate a magnetic resonance system to use nonconventional methods of data acquisition, yet produce clearer images.

Walter Block | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>