Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technique quickly builds 3-D images of knees

31.07.2006
A faster magnetic resonance imaging (MRI) data-acquisition technique will cut the time many patients spend in a cramped magnetic resonance scanner, yet deliver more precise 3-D images of their bodies.

Developed at the University of Wisconsin-Madison, the faster technique will enable clinics to image more patients - particularly the burgeoning group of older adults with osteoarthritis-related knee problems - and can help researchers more rapidly assess new treatments for such conditions.

Magnetic resonance has long been touted as the ideal method for capturing 3-D images of the human body. "But unfortunately, it is kind of a slow technique," says Walter Block, an associate professor of biomedical engineering and medical physics. "You can only sample a few pieces of information needed to build the image at a time."

Consequently, most magnetic resonance technicians acquire images as a series of 2-D slices, which yield high resolution in a single plane and poor resolution in the remaining direction, he says.

To capture an image, a magnetic resonance scanner commonly conducts hundreds to thousands of little "experiments," or encodings, that help to make up the big picture. Block's data-acquisition technique capitalizes on recent magnetic resonance hardware advances that, coupled with a novel way of maintaining a high-level magnetic resonance signal throughout the scan, will speed an MRI session. "But to maintain the high-level signal," he says," you need to be able to complete each of these smaller encodings within a couple of milliseconds."

Rather than using the conventional approach, which sweeps horizontally to gather magnetic resonance data, Block's technique acquires the body's signals radially, in a way that looks somewhat like a toy Koosh ball. "We can essentially acquire data during the whole experiment, where in the (conventional) case, a lot of time was spent either prepping for the experiment or returning it to the steady state so that you could do the next experiment," Block says. "What we're doing now is capable of a study that you can visualize in any plane in about the same time as people are doing one plane."

For example, when imaging a joint like the knee - Block's inspiration for developing the new technique - suppressing the fat signal in bone provides image contrast between bone and the cartilage surface. The conventional data-acquisition method would spend half its scan time suppressing the signal from fat, instead of imaging cartilage. However, Block's technique exploits the difference in resonant frequencies between fat and water. During the scan time, then, the technique maximizes each component of the image, so that a technician can view any aspect.

High-resolution 3-D images are important not only from diagnostic and clinical standpoints, but also to help patients better understand their health conditions, says Block. "If you could actually look at a 3-D model from different perspectives, you'd have a much better chance to make sense of the pain you're feeling, your doctor's diagnosis and your treatment options," he says.

The technique, which Block patented through the Wisconsin Alumni Research Foundation, also will make it easier to image parts of the body, such as the heart or abdomen, in which motion is a factor.

In related research, Block also has developed an algorithm that, within less than a second, can calibrate a magnetic resonance system to use nonconventional methods of data acquisition, yet produce clearer images.

Walter Block | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>