Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3D computer simulation to aid treatment of collapsed lungs

The treatment of premature babies and adults who suffer from Respiratory Distress Syndrome could be boosted by new research at The University of Manchester, as published in the Journal of Biomechanical Engineering.

The condition, often caused by a lack of surfactant in the underdeveloped lungs of prematurely born babies, can lead to blocked airways causing severe breathing difficulties. To reopen a blocked airway a pressurised finger of air has to be forced deep into the airway.

Dr Matthias Heil and Dr Andrew Hazel, of the University’s School of Mathematics have created the first 3D computer simulation that mimics the complex process by which a propagating air finger reopens the collapsed airway. This process involves a complex interaction between fluid mechanics, the air pressure, surface tension and wall elasticity inside the airways.

Dr Heil said: “When the lung collapses you want to be able to reopen airways as quickly as possible but you do not want to damage the lung. There is a very fine balance between the amount of pressure you can apply and the potential damage you might cause.

“Currently this assessment has to be made by a medic solely based on experience. We hope that our simulation will help to inform and improve the medical treatment of infants and adults suffering from this condition.”

In their paper, ‘Finite-Reynolds-Number Effects in Steady, Three Dimensional Airway Reopening,’ Heil and Hazel demonstrate the importance of ‘fluid inertia’ when assessing the pressure required to reopen a blocked airway.

They find that if ‘fluid inertia’ is not taken into account the estimated pressure required to reopen a blocked airway is too low. In addition, they find that the reopening pressure decreases as the level of airway collapse increases.

For further information:

Simon Hunter, Media Relations Officer, telephone: 0161 2758387

Simon Hunter | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>