Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists engineer human tissue with electricity

23.06.2006
Scientists at The University of Manchester have developed a new technique which uses electricity to engineer human tissue. They now believe it may have the potential to engineer bespoke bone marrow.

The technique, which uses electric fields to build up layers of cells to form a tissue, is being used to create Hematons – aggregates of blood producing cells essential in the function of healthy bone marrow.

Dr Gerard Markx, of the School of Chemical Engineering and Analytical Science, has developed the technique based on a phenomenon called dielectrophoresis.

Dr Markx said: “We have proven this technique works, and have created some very simple Hematon structures in the lab. If we can perfect this technique then it may one day be possible to create artificial bone marrow outside the body and produce any given blood type.”

Dr Markx and his research team, which includes scientists in the University’s Faculty of Life Sciences, have so far created tissue 200 microns thick using the technique.

The function of bone marrow in the body is the production of blood. The most productive part of the bone marrow is formed by the hematon. Hematons are thought to be dysfunctional in patients suffering from bone marrow diseases like leukaemia.

Tissue is made using a series of glass slides with micro-electrodes etched on top of them. A solution containing cells is introduced to the slides. Electric fields are then created between the electrodes by running a small AC current through them.

In a similar way to which iron filings are attracted to the poles of magnets, the cells are attracted to the regions between the electrodes. As the cells collect together layers of cells build up, forming tissue.

Dr Markx said: “The use of electricity enables greater control over the position of the cells than conventional techniques. By varying the voltage and using different electrode shapes, cells can be positioned and stacked on top of each other in any pattern. Different electric fields can also be used to attract different types of cells. Most importantly, cells can be kept alive and active.”

The micro-electrodes used measure between 50-250 microns in size and can be positioned in any formation.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>