Smell of success for nanobiosensors

The new interdisciplinary technology approach, developed and tested by researchers in Spain, France and Italy with funding from the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, will ultimately lead to electronic noses based on natural olfactory receptors that could be used not only in healthcare but also in agriculture, industry, environmental protection or security.

“The potential uses of smell technology are endless,” notes Josep Samitier, the coordinator of the SPOT-NOSED project that developed nanobiosensors to mimic the way human and animal noses respond to different odours.

This new nose biosensor is unusual in how it’s made. By placing a layer of proteins that constitute the olfactory receptors in animal noses on a microelectrode and measuring the reaction when the proteins come into contact with different odorants, the system is capable of detecting odorants at concentrations that would be imperceptible to humans.

“Our tests showed that the nanobiosensors will react to a few molecules of odorant with a very high degree of accuracy. Some of the results of the trials surpassed even our expectations,” Samitier says. These tiny bioelectronic sensors, he says, represent a ‘major leap forward’ in smell technology and a clear example of a biomimetic devices obtained by converging Nano-Bio-Info technologies.

Several hundred different proteins, which the SPOT-NOSED researchers genetically copied from rats and grew in yeast, would be needed for an electronic nose to detect almost any smell because different proteins react to different odorants and it is the resultant combination of reactions that identifies a certain smell. Nanotechnology makes such an electronic nose feasible, the coordinator notes, even though the human nose uses 1,000 different proteins to allow the brain to recognise 10,000 different smells.

While the SPOT-NOSED project focused on replicating the physical reaction that takes place in animal noses, the project partners are now planning to continue their research and develop the instrumentation and software tools necessary for an electronic nose to recognise smells – the role played by the brain in the olfactory system. In this sense, new high accuracy electronic instrumentation capable of performing electrical measurements at the nanoscale level has been developed and adapted to an atomic force microscope with atofarad precision (10-15).

This, Samitier says, could lead to medical applications to diagnose organ failure, bacterial infections or diseases such as cancer being made commercially available within a few years, as well as devices that would have a major impact on other sectors. A major challenge of these new diagnostic tools lies in the establishment of a precise odorant disease signature, understood as the mix of volatile compounds whose concentration in a body fluid (i.e. urine, blood, pus, etc) or in the breath varies in patients with the malignancy with respect to healthy individuals. Moreover, smell technology could, for example, be used to detect rotten food, test cosmetics and pharmaceuticals, identify pollutants or scan for drugs and bombs at airports, replacing chemical sensors that are only able to detect a single substance.

Media Contact

Tara Morris alfa

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors