Breath of Life: A New Diagnostic Technique

A revolutionary breath analysis machine is going on trial in a clinical environment for the first time. The invention of Professor David Smith and Professor Patrik Spanel from Keele University’s Institute for Science and Technology in Medicine, in Staffordshire, is a revolutionary technique known as SIFT-MS, which works by measuring trace gases or metabolites present in the breath.

It is so sensitive that it is capable of detecting a single molecule amid several billion molecules of air, infinitely more sensitive than a standard breathalyser used for alcohol testing.

The technique has two major advantages over other ways of diagnosing illnesses: it is non–invasive, the patient simply breathes into a tube, making it particularly useful in paediatric medicine; and the results are available online and in real time, so the doctor can get a read out immediately.

Initially it will be used to study the breath of patients with renal disease, and help to identify how effective their treatment is; another key area where it will be used is in the study of children with respiratory illnesses like asthma and cystic fibrosis.

They were working in astro-physics studying interstellar space, when they realised their work could have a medical application, and they developed the technique known as SIFT-MS.

With the installation of two devices in this new patient facility at Keele University, their research will advance exponentially

Professor Smith said: “The development of the instrumentation and technology has had to take place through the analysis of the breath of volunteers. This is a critical thing you have to do anyway but with a new building we now will have the facility to bring in patients, sick patients, in labs which are properly prepared to receive patients and then to do on line real time analysis on the breath and hopefully diagnose particular disease states.”

And Professor Patrik Spanel added: “Already we can detect maybe 10 different metabolites present in breath of people like ammonia, asotome, isoprene, or some metabolites that are a clear marker of some disease like hydrogen cyanide and even these can actually serve as valuable markers of various conditions when they are elevated outside the normal range.”

Said Professor Smith: “The two main areas that our resident paediatricians in this area are interested in are asthma and cystic fibrosis in young people. So what we’ll be doing now with a new facility here to bring the children in and to look at the breath metabolites online and in real time and to look for molecules that are indicative of these diseases. The idea being that if you can do that simply and non-invasively you can monitor therapy. You can give them the appropriate drug for therapy and watch whether or not the disease is diminishing. This is the essential point about doing these tests now with this instrumentation online, it’s straightforward, it’s non-invasive.”

The sheer size of the machinery required was one of the limitations in developing this technique in the past, but now its down to a manoeuvrable size, and they think it could be reduced further in the future to the equivalent of a shoe box which could make wider distribution possible.

While clinical use is still in the early stages, breath analysis devices could be seen in every GP’s surgery, as a standard means of diagnosis.

Professor Smith said: “A major move would be into primary care, that is in the GP’s surgery for, for example screening the population for diseases such as diabetes. It is said that 10% of the population has diabetes. Many of which are undiagnosed. A breath test for asitome for example will pick this up in its early stage so we can imagine a small instrument in a GP’s surgery and any patient that came through could be measured whether they’re suspected or not of having this disease. A screening procedure in exactly the same way it is proposed that screening for breast cancer by x-ray is done.”

Media Contact

Chris Stone alfa

More Information:

http://www.keele.ac.uk

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors