Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath of Life: A New Diagnostic Technique

15.05.2006

A revolutionary breath analysis machine is going on trial in a clinical environment for the first time. The invention of Professor David Smith and Professor Patrik Spanel from Keele University’s Institute for Science and Technology in Medicine, in Staffordshire, is a revolutionary technique known as SIFT-MS, which works by measuring trace gases or metabolites present in the breath.

It is so sensitive that it is capable of detecting a single molecule amid several billion molecules of air, infinitely more sensitive than a standard breathalyser used for alcohol testing.

The technique has two major advantages over other ways of diagnosing illnesses: it is non–invasive, the patient simply breathes into a tube, making it particularly useful in paediatric medicine; and the results are available online and in real time, so the doctor can get a read out immediately.

Initially it will be used to study the breath of patients with renal disease, and help to identify how effective their treatment is; another key area where it will be used is in the study of children with respiratory illnesses like asthma and cystic fibrosis.

They were working in astro-physics studying interstellar space, when they realised their work could have a medical application, and they developed the technique known as SIFT-MS.

With the installation of two devices in this new patient facility at Keele University, their research will advance exponentially

Professor Smith said: “The development of the instrumentation and technology has had to take place through the analysis of the breath of volunteers. This is a critical thing you have to do anyway but with a new building we now will have the facility to bring in patients, sick patients, in labs which are properly prepared to receive patients and then to do on line real time analysis on the breath and hopefully diagnose particular disease states.”

And Professor Patrik Spanel added: “Already we can detect maybe 10 different metabolites present in breath of people like ammonia, asotome, isoprene, or some metabolites that are a clear marker of some disease like hydrogen cyanide and even these can actually serve as valuable markers of various conditions when they are elevated outside the normal range.”

Said Professor Smith: “The two main areas that our resident paediatricians in this area are interested in are asthma and cystic fibrosis in young people. So what we’ll be doing now with a new facility here to bring the children in and to look at the breath metabolites online and in real time and to look for molecules that are indicative of these diseases. The idea being that if you can do that simply and non-invasively you can monitor therapy. You can give them the appropriate drug for therapy and watch whether or not the disease is diminishing. This is the essential point about doing these tests now with this instrumentation online, it’s straightforward, it’s non-invasive.”

The sheer size of the machinery required was one of the limitations in developing this technique in the past, but now its down to a manoeuvrable size, and they think it could be reduced further in the future to the equivalent of a shoe box which could make wider distribution possible.

While clinical use is still in the early stages, breath analysis devices could be seen in every GP’s surgery, as a standard means of diagnosis.

Professor Smith said: “A major move would be into primary care, that is in the GP’s surgery for, for example screening the population for diseases such as diabetes. It is said that 10% of the population has diabetes. Many of which are undiagnosed. A breath test for asitome for example will pick this up in its early stage so we can imagine a small instrument in a GP’s surgery and any patient that came through could be measured whether they’re suspected or not of having this disease. A screening procedure in exactly the same way it is proposed that screening for breast cancer by x-ray is done.”

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>