Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath of Life: A New Diagnostic Technique

15.05.2006

A revolutionary breath analysis machine is going on trial in a clinical environment for the first time. The invention of Professor David Smith and Professor Patrik Spanel from Keele University’s Institute for Science and Technology in Medicine, in Staffordshire, is a revolutionary technique known as SIFT-MS, which works by measuring trace gases or metabolites present in the breath.

It is so sensitive that it is capable of detecting a single molecule amid several billion molecules of air, infinitely more sensitive than a standard breathalyser used for alcohol testing.

The technique has two major advantages over other ways of diagnosing illnesses: it is non–invasive, the patient simply breathes into a tube, making it particularly useful in paediatric medicine; and the results are available online and in real time, so the doctor can get a read out immediately.

Initially it will be used to study the breath of patients with renal disease, and help to identify how effective their treatment is; another key area where it will be used is in the study of children with respiratory illnesses like asthma and cystic fibrosis.

They were working in astro-physics studying interstellar space, when they realised their work could have a medical application, and they developed the technique known as SIFT-MS.

With the installation of two devices in this new patient facility at Keele University, their research will advance exponentially

Professor Smith said: “The development of the instrumentation and technology has had to take place through the analysis of the breath of volunteers. This is a critical thing you have to do anyway but with a new building we now will have the facility to bring in patients, sick patients, in labs which are properly prepared to receive patients and then to do on line real time analysis on the breath and hopefully diagnose particular disease states.”

And Professor Patrik Spanel added: “Already we can detect maybe 10 different metabolites present in breath of people like ammonia, asotome, isoprene, or some metabolites that are a clear marker of some disease like hydrogen cyanide and even these can actually serve as valuable markers of various conditions when they are elevated outside the normal range.”

Said Professor Smith: “The two main areas that our resident paediatricians in this area are interested in are asthma and cystic fibrosis in young people. So what we’ll be doing now with a new facility here to bring the children in and to look at the breath metabolites online and in real time and to look for molecules that are indicative of these diseases. The idea being that if you can do that simply and non-invasively you can monitor therapy. You can give them the appropriate drug for therapy and watch whether or not the disease is diminishing. This is the essential point about doing these tests now with this instrumentation online, it’s straightforward, it’s non-invasive.”

The sheer size of the machinery required was one of the limitations in developing this technique in the past, but now its down to a manoeuvrable size, and they think it could be reduced further in the future to the equivalent of a shoe box which could make wider distribution possible.

While clinical use is still in the early stages, breath analysis devices could be seen in every GP’s surgery, as a standard means of diagnosis.

Professor Smith said: “A major move would be into primary care, that is in the GP’s surgery for, for example screening the population for diseases such as diabetes. It is said that 10% of the population has diabetes. Many of which are undiagnosed. A breath test for asitome for example will pick this up in its early stage so we can imagine a small instrument in a GP’s surgery and any patient that came through could be measured whether they’re suspected or not of having this disease. A screening procedure in exactly the same way it is proposed that screening for breast cancer by x-ray is done.”

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>