Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath of Life: A New Diagnostic Technique

15.05.2006

A revolutionary breath analysis machine is going on trial in a clinical environment for the first time. The invention of Professor David Smith and Professor Patrik Spanel from Keele University’s Institute for Science and Technology in Medicine, in Staffordshire, is a revolutionary technique known as SIFT-MS, which works by measuring trace gases or metabolites present in the breath.

It is so sensitive that it is capable of detecting a single molecule amid several billion molecules of air, infinitely more sensitive than a standard breathalyser used for alcohol testing.

The technique has two major advantages over other ways of diagnosing illnesses: it is non–invasive, the patient simply breathes into a tube, making it particularly useful in paediatric medicine; and the results are available online and in real time, so the doctor can get a read out immediately.

Initially it will be used to study the breath of patients with renal disease, and help to identify how effective their treatment is; another key area where it will be used is in the study of children with respiratory illnesses like asthma and cystic fibrosis.

They were working in astro-physics studying interstellar space, when they realised their work could have a medical application, and they developed the technique known as SIFT-MS.

With the installation of two devices in this new patient facility at Keele University, their research will advance exponentially

Professor Smith said: “The development of the instrumentation and technology has had to take place through the analysis of the breath of volunteers. This is a critical thing you have to do anyway but with a new building we now will have the facility to bring in patients, sick patients, in labs which are properly prepared to receive patients and then to do on line real time analysis on the breath and hopefully diagnose particular disease states.”

And Professor Patrik Spanel added: “Already we can detect maybe 10 different metabolites present in breath of people like ammonia, asotome, isoprene, or some metabolites that are a clear marker of some disease like hydrogen cyanide and even these can actually serve as valuable markers of various conditions when they are elevated outside the normal range.”

Said Professor Smith: “The two main areas that our resident paediatricians in this area are interested in are asthma and cystic fibrosis in young people. So what we’ll be doing now with a new facility here to bring the children in and to look at the breath metabolites online and in real time and to look for molecules that are indicative of these diseases. The idea being that if you can do that simply and non-invasively you can monitor therapy. You can give them the appropriate drug for therapy and watch whether or not the disease is diminishing. This is the essential point about doing these tests now with this instrumentation online, it’s straightforward, it’s non-invasive.”

The sheer size of the machinery required was one of the limitations in developing this technique in the past, but now its down to a manoeuvrable size, and they think it could be reduced further in the future to the equivalent of a shoe box which could make wider distribution possible.

While clinical use is still in the early stages, breath analysis devices could be seen in every GP’s surgery, as a standard means of diagnosis.

Professor Smith said: “A major move would be into primary care, that is in the GP’s surgery for, for example screening the population for diseases such as diabetes. It is said that 10% of the population has diabetes. Many of which are undiagnosed. A breath test for asitome for example will pick this up in its early stage so we can imagine a small instrument in a GP’s surgery and any patient that came through could be measured whether they’re suspected or not of having this disease. A screening procedure in exactly the same way it is proposed that screening for breast cancer by x-ray is done.”

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>