Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz imaging may reduce breast cancer surgeries

26.04.2006


A promising new technique to ensure complete tumor removal at breast cancer excision is introduced in the May issue of Radiology.

Researchers used light waves in a newly explored region of the electromagnetic spectrum--the terahertz region--to examine excised breast tissue and determine if the removed tissue margins were clear of cancer, with good results. This technology has the potential to eliminate the need for multiple surgeries and tissue samples to get clear surgical margins.

"We found that terahertz light could reliably distinguish between normal breast tissue, tumor and even early-stage ’in situ’ cancers in excised tissue samples," said Vincent P. Wallace, Ph.D., lead investigator at TeraView, who worked with Addenbrooke’s Hospital in Cambridge, England, in conducting the study. "This technology could aid the surgeon in immediately identifying residual cancer after the main tumor has been removed, thus minimizing the need for additional surgical procedures."

Currently, excised tissue samples must be sent for histopathologic examination, which typically takes several days. Thus, surgeons don’t know if all the tumor has been removed until well after the surgical procedure has been completed, and often, repeat surgeries have to be scheduled. For the first time, however, terahertz imaging has the potential to eliminate the need for subsequent procedures by allowing the surgeon to analyze tissue samples during the initial excision procedure.

Terahertz light is located between the infrared and microwave portions of the electromagnetic spectrum. The researchers found that by placing a slice of excised breast tissue on a special quartz plate and exposing it to terahertz light, the light waves reflected from the tissue contained unique information about its state. The researchers were able to distinguish both invasive and noninvasive breast carcinomas from healthy tissue.

Twenty-two excised breast tissue samples were obtained from 22 women who underwent either wide local excision or mastectomy to remove breast cancer. All samples were first sliced and imaged with terahertz light, and then submitted for histopathologic analysis. Imaging took less than five minutes.

"There were substantial differences in the optical properties of normal and diseased tissue," Dr. Wallace said. The size and shape of the diseased regions at terahertz imaging were compared with those at histopathologic examination, with good results. All but three samples yielded invasive cancers. In total, there were two invasive lobular carcinomas, 14 invasive ductal carcinomas, three mixed invasive ductal and lobular carcinomas, two cases of pure ductal carcinoma in situ and one dense radial scar.

In breast cancer excision surgery, the aim is to remove the entire tumor with an adequate margin of normal tissue, while minimizing the amount of healthy tissue being removed. If a histopathologist analyzes the tissue and finds tumor at or near the edges, this indicates that there is a higher chance of cancer recurrence. A second operation is required to remove more tissue, involving additional hospital resources and increased risk of patient morbidity. Thus, there is a clinical need to accurately define the margins of the tumor during surgery.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>