Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioactive cement scaffold may improve bone grafts

18.04.2006


A new technology for implants that may improve construction or repair of bones in the face, skull and jaw, has been developed by researchers from the American Dental Association Foundation (ADAF) and the National Institute of Standards and Technology (NIST).

Described in recent and upcoming journal articles,* the new technology provides a method for making scaffolds for bone tissue. The scaffold is seeded with a patient’s own cells and is formed with a cement paste made of minerals also found in natural bone. The paste is mixed with beads of a natural polymer (made from seaweed) filled with bone cells. The paste is shaped or injected into a bone cavity and then allowed to harden with the encapsulated cells dispersed throughout the structure. The natural polymer beads gradually dissolve when exposed to the body’s fluids, creating a scaffold that is filled by the now released bone cells.

The cement, a calcium phosphate material, is strengthened by adding chitosan, a biopolymer extracted from crustacean shells. The implant is further reinforced to about the same strength as spongy natural bone by covering it with several layers of a biodegradable fiber mesh already used in clinical practice.

"Bone cells are very smart," says Hockin Xu, of the ADAF and principal investigator for the project. "They can tell the difference between materials that are bioactive compared to bioinert polymers. Our material is designed to be similar to mineral in bone so that cells readily attach to the scaffold." The researchers used mouse bone cells in their experiments, but in practice surgeons would use cells cultured from patient samples. In addition to creating pores in the hardened cement, the natural polymer beads protect the cells during the 30 minutes required for the cement to harden. Future experiments will develop methods for improving the material’s mechanical properties by using smaller encapsulating beads that biodegrade at a predictable rate.

NIST and the American Dental Association Foundation have conducted cooperative research on dental and medical materials since 1928. ADAF researchers focus on development of new dental materials, while NIST specializes in the development of improved technologies and methods for measuring materials properties.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>