Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT technology used to shrink tumor at Boston hospital

04.04.2006


Medical lasers are like science fiction heat rays that can vaporize tumors. The problem has been getting the lasers to where they are needed inside the body while protecting healthy tissue.

Now "perfect mirror" technology, developed by MIT researchers, is being used to shoot a laser through a spaghetti-thin, flexible fiber to attack tumors and other diseased tissue in highly targeted, minimally invasive surgery.

OmniGuide fiber, licensed through MIT’s Technology Licensing Office, scored a world first at Brigham and Women’s Hospital in Boston last October when thoracic surgeon Dr. Raphael Bueno used it to shrink a patient’s cancerous lung tumor by 90 percent. Although carbon dioxide lasers have been used for more than 30 years to surgically remove diseased tissue in the throat, larynx, intestines and elsewhere, there was no easy way to get the lasers inside the body. Extensive surgery was required.

"The OmniGuide fiber gives us a tremendous advantage in treating lung cancer patients, many of whom have limited options because of the sensitive locations of their tumors," Bueno said. Existing laser technologies are considered too risky for some patients because they can penetrate up to a centimeter beyond their placement, jeopardizing organs close to the tumor, including the heart, Bueno said.

The connection with Bueno was facilitated through the Center for the Integration of Medicine and Innovative Technology (CIMIT), a consortium involving MIT, Harvard Medical School and the leading teaching hospitals affiliated with HMS. Bueno first heard about the technology at CIMIT’s 2003 annual conference in a lecture series focused on new technologies for surgical applications.

The fiber originated with the "perfect mirror" created in 1998 by Yoel Fink, associate professor of materials science and engineering; John D. Joannopoulos, the Francis Wright Davis Professor of Physics; and Edwin L. Thomas, the Morris Cohen Professor of Materials Science and Engineering.

While the familiar metallic mirror is omnidirectional, which means it reflects light from every angle, it also absorbs a significant portion of the incident light. The new kind of mirror developed by the MIT team can reflect light from all angles and polarizations, just like metallic mirrors, but does so with much higher efficiency. In addition, the mirrors can be "tuned" to reflect certain wavelength ranges and transmit the rest of the spectrum, making them omnidirectional reflectors.

In 2002 a team from Fink’s laboratory published an article in the journal Nature showing that it was possible to form an omnidirectional perfect mirror into a "pipe" surrounding a hollow core. The mirror’s creators then developed a process for making hollow-core fibers that are as thin as spaghetti and transport a beam of intense laser light for meters.

Less than two years later, the fiber was used for the first time in an experimental surgery at Wake Forest Hospital in North Carolina. The U.S. Food and Drug Administration approved the OmniGuide’s flexible fiber laser in May 2005, leading the way for its use in treating a growing number of patients at otolaryngology and head and neck clinics and hospitals around the country. It has been used in more than 40 procedures.

"To the best of our knowledge, this is the first-ever FDA clearance for photonic bandgap technology in a surgical system," said Fink, who helped develop the perfect mirror as an MIT graduate student. "From the publication of the study in Nature to the first operation in a patient took less than two years. Many times the development of a novel therapeutic tool - from concept to paper to patient - takes 10 years and costs many millions of dollars. Here, we’re excited to show an example to the contrary."

"I am very excited about this technology because it liberates me from the limitations of the traditional ’line-of-sight’ laser beam," said Dr. Chris Holsinger of the University of Texas M.D. Anderson Cancer Center. "In the head and neck, with its complex 3-D anatomy, the ability to use the laser as I would manipulate a scalpel in three-dimensional space represents a dramatic step forward."

OmniGuide Inc., based in Cambridge, Mass., was co-founded by Fink, Joannopoulos, Thomas and Uri Kolodny, who has an M.B.A. from the Sloan School of Management. The company was backed by MIT alumnus and donor Ray Stata, founder of Analog Devices, who also served as OmniGuide acting CEO.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>