Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UA Optical Scientists Develop Switchable Focus Eyeglass Lenses


Optical scientists have developed eyeglass lenses that switch focus in a blink of an eye.

Optical scientists at The University of Arizona have developed new switchable, flat, liquid crystal diffractive lenses that can adaptively change their focusing power. That’s great news for those old enough to wear bifocals. And it’s great news for anyone with imperfect vision, for it opens the way for next-generation "smart" eyeglasses -- glasses with built-in automatic focus.

In the foreseeable future, for example, you won’t change prescription eyeglasses -- your eye doctor will just tweak a new prescription into the specs you already own. You could even program your glasses for better than 20-20 vision. "Right now, in our prototype, you switch the lenses on or off to change focus," said Nasser Peyghambarian, chair of photonics and lasers in UA’s College of Optical Sciences and professor of optical sciences, materials science and engineering. "But ultimately this will act just like your automatic camera: Eyeglass lenses will know where to focus just like your auto-focusing camera does."

Peyghambarian is part of the team that began developing the focus-changing lenses in 2001 under an agreement between the university and private industry. The UA licensed three patents from the work to the Johnson and Johnson Development Corp., which sponsored the research. A firm called Pixel Optics has since purchased the patent licenses from Johnson and Johnson to commercialize the innovative technology.

Ten UA scientists and two colleagues now at the Georgia Institute of Technology are publishing their first science paper about the switchable-focus lenses this week in an article online at the Proceedings of the National Academy of Sciences website, The novel lenses focus electroactively, said Guoqiang Li, UA optical sciences assistant research professor and lead author on the scientific paper.

They are basically two pieces of flat glass spaced five microns apart. Five microns is an incredibly small space -- roughly one-twentieth the diameter of a human hair. The space is filled with liquid crystal -- the same kind of stuff in your laptop’s liquid crystal display. The flat glass is coated with an even thinner layer (one-tenth micron) of indium tin oxide, or ITO, which is a transparent electrode. Unlike electrodes made of aluminum or gold, ITO transmits most of the light that hits it. The transparent electrodes are patterned in a circular array over the area of the lens. The circular pattern is created through photolithography, an extremely precise technique that processes with light and chemicals.

Applying less than two volts to the circuit changes the orientation of the liquid crystal molecules, and that changes the optical path length through the lens. It takes only about 1.8 volts to change the index of refraction so that light refocuses, Peyghambarian and Li explained. The result is a flat piece of glass that acts like a lens. The scientists first tested the imaging properties of the lens on a model human eye, then built prototype eyeglasses that real humans tested. The clinical results agreed with the model eye test. Their tests showed that distance vision was no way impaired when the glasses were switched off and enabled close-up vision when switched on. Prototype switchable focus glasses developed at the University of Arizona. Industry will commercialize a more attractive version.

"We have demonstrated switchable liquid crystal diffractive lenses with high diffraction efficiency, high optical quality, rapid response time, and diffraction limited performance," they reported in the PNAS article. "These flat lenses are highly promising to replace conventional area division refractive, multi-focal spectacle lenses used by presbyopes," they wrote. Estimates are that 93 percent of the world’s population over age 45 have the condition called "presbyopia," where an aging person’s eye lens loses flexibility and therefore, its ability to shift focus from distant to near objects. Presbyopes will be some of the first to benefit from the UA research.

Electroactively focusing eyeglasses will revolutionize the $50 billion worldwide vision care industry, backers said at the outset of the UA research project. Their major step in creating state-of-the-art liquid crystal diffractive lenses will have applications beyond vision care, the scientists predict. Tools with switchable lens elements would be valuable in dentistry, for example. "It’s great to see our new concept materialize and be validated after all these years of continuous efforts," said Bernard Kippelen. Kippelen, who helped start the project when he was at the UA, is now a professor of electrical and computer engineering at Georgia Tech. "People don’t often recognize that university scientists make prototypes," Peyghambarin said. "People think of us as just generating science papers. But when we actually make something like this, in house, people begin to realize we have real expertise that’s applicable to everyday problems."

In addition to Li and Peyghambarian, UA optical scientists who collaborated in the research are David L. Mathine, Pouria Valley, Pekka Ayras, M. S. Giridhar, Gregory Williby, James Schwiegerling (who also is on the faculty in UA’s department of ophthalmology and vision sciences), Gerald R. Meredith, and Seppo Honkanen. Bernard Kippelen and Joshua N. Haddock of the Georgia Institute Technology also collaborated.

Lori Stiles | University of Arizona
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>