Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Optical Scientists Develop Switchable Focus Eyeglass Lenses

04.04.2006


Optical scientists have developed eyeglass lenses that switch focus in a blink of an eye.

Optical scientists at The University of Arizona have developed new switchable, flat, liquid crystal diffractive lenses that can adaptively change their focusing power. That’s great news for those old enough to wear bifocals. And it’s great news for anyone with imperfect vision, for it opens the way for next-generation "smart" eyeglasses -- glasses with built-in automatic focus.

In the foreseeable future, for example, you won’t change prescription eyeglasses -- your eye doctor will just tweak a new prescription into the specs you already own. You could even program your glasses for better than 20-20 vision. "Right now, in our prototype, you switch the lenses on or off to change focus," said Nasser Peyghambarian, chair of photonics and lasers in UA’s College of Optical Sciences and professor of optical sciences, materials science and engineering. "But ultimately this will act just like your automatic camera: Eyeglass lenses will know where to focus just like your auto-focusing camera does."

Peyghambarian is part of the team that began developing the focus-changing lenses in 2001 under an agreement between the university and private industry. The UA licensed three patents from the work to the Johnson and Johnson Development Corp., which sponsored the research. A firm called Pixel Optics has since purchased the patent licenses from Johnson and Johnson to commercialize the innovative technology.

Ten UA scientists and two colleagues now at the Georgia Institute of Technology are publishing their first science paper about the switchable-focus lenses this week in an article online at the Proceedings of the National Academy of Sciences website, http://www.pnas.org/current/shtml. The novel lenses focus electroactively, said Guoqiang Li, UA optical sciences assistant research professor and lead author on the scientific paper.

They are basically two pieces of flat glass spaced five microns apart. Five microns is an incredibly small space -- roughly one-twentieth the diameter of a human hair. The space is filled with liquid crystal -- the same kind of stuff in your laptop’s liquid crystal display. The flat glass is coated with an even thinner layer (one-tenth micron) of indium tin oxide, or ITO, which is a transparent electrode. Unlike electrodes made of aluminum or gold, ITO transmits most of the light that hits it. The transparent electrodes are patterned in a circular array over the area of the lens. The circular pattern is created through photolithography, an extremely precise technique that processes with light and chemicals.

Applying less than two volts to the circuit changes the orientation of the liquid crystal molecules, and that changes the optical path length through the lens. It takes only about 1.8 volts to change the index of refraction so that light refocuses, Peyghambarian and Li explained. The result is a flat piece of glass that acts like a lens. The scientists first tested the imaging properties of the lens on a model human eye, then built prototype eyeglasses that real humans tested. The clinical results agreed with the model eye test. Their tests showed that distance vision was no way impaired when the glasses were switched off and enabled close-up vision when switched on. Prototype switchable focus glasses developed at the University of Arizona. Industry will commercialize a more attractive version.

"We have demonstrated switchable liquid crystal diffractive lenses with high diffraction efficiency, high optical quality, rapid response time, and diffraction limited performance," they reported in the PNAS article. "These flat lenses are highly promising to replace conventional area division refractive, multi-focal spectacle lenses used by presbyopes," they wrote. Estimates are that 93 percent of the world’s population over age 45 have the condition called "presbyopia," where an aging person’s eye lens loses flexibility and therefore, its ability to shift focus from distant to near objects. Presbyopes will be some of the first to benefit from the UA research.

Electroactively focusing eyeglasses will revolutionize the $50 billion worldwide vision care industry, backers said at the outset of the UA research project. Their major step in creating state-of-the-art liquid crystal diffractive lenses will have applications beyond vision care, the scientists predict. Tools with switchable lens elements would be valuable in dentistry, for example. "It’s great to see our new concept materialize and be validated after all these years of continuous efforts," said Bernard Kippelen. Kippelen, who helped start the project when he was at the UA, is now a professor of electrical and computer engineering at Georgia Tech. "People don’t often recognize that university scientists make prototypes," Peyghambarin said. "People think of us as just generating science papers. But when we actually make something like this, in house, people begin to realize we have real expertise that’s applicable to everyday problems."

In addition to Li and Peyghambarian, UA optical scientists who collaborated in the research are David L. Mathine, Pouria Valley, Pekka Ayras, M. S. Giridhar, Gregory Williby, James Schwiegerling (who also is on the faculty in UA’s department of ophthalmology and vision sciences), Gerald R. Meredith, and Seppo Honkanen. Bernard Kippelen and Joshua N. Haddock of the Georgia Institute Technology also collaborated.

Lori Stiles | University of Arizona
Further information:
http://www.optics.arizona.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>