Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel newborn screening can open door to treating rare but devastating diseases

29.03.2006

Rare metabolic diseases such as Tay-Sachs, Fabry and Gaucher syndromes are caused by enzyme deficiencies and typically have crippling, even fatal, consequences starting at very early ages. Now a team of University of Washington scientists has developed a relatively simple screening process to detect enzyme deficiencies in newborns that will allow treatment to begin before too much damage has been done.

"All of the damage from these diseases is permanent, so if you can start treatment early, in a few weeks or months, you can begin to minimize the damage," said Frantisek Turecek, a UW chemistry professor.

The technique uses a spot of blood drawn from a baby’s heel and dried on a paper card. A 2-millimeter section is punched out of the spot, then is rehydrated, the target enzymes are incubated and then measured using tandem mass spectrometry, a means of determining a substance’s chemical makeup and quantity. The sample can be screened for perhaps 15 enzyme deficiencies at the same time, and the entire process typically will take less than two days, Turecek said

So far the screening method has been effective in detecting seven diseases – Krabbe, Pompe, Niemann-Pick, Gaucher, Fabry, Tay-Sachs and Hurler syndromes – associated with enzyme deficiencies within structures called lysosomes, which break down large molecules in most cells.

In each of the diseases, babies typically are symptom free for the first few months to a year of life and then begin to show signs of the disease. The effects can appear gradually over many years or can accumulate rapidly, with the worst cases causing mental retardation, blindness and finally death by the age of 5 or 6. The diseases begin when a missing link – a deficient enzyme – in the lysosome’s biochemical chain causes waste material to accumulate in the cell.

"It’s like the garbage collectors have all gone on strike," Turecek said. "The garbage builds up, the cell struggles and eventually it dies."

The diseases are relatively rare, and typically the greatest risk lies with certain populations. Tay-Sachs, for instance, occurs most frequently in descendants of central and eastern European Jews, and about one in 30 American Jews carries the Tay-Sachs gene, an occurrence about 100 times greater than for other ethnic groups. Non-Jewish French-Canadians and Cajuns of Louisiana have a similarly elevated risk.

Some of the telltale symptoms can be very similar among all these diseases, making a medical diagnosis difficult, particularly early in life when the symptoms are not readily apparent. The new screening method will allow precise diagnosis very early, so newly developed pharmaceutical treatments can be administered in time to repair the break in the lysosome’s biochemical chain and stop further damage.

After an initial investment in mass spectrometry equipment, the new screening should have a relatively low cost, perhaps 5 cents per analysis for chemicals and materials, Turecek said. He estimates one tandem mass spectrometer could process 85,000 screenings a year, equivalent to the state of Washington’s annual birth rate.

The UW research team has been working toward a new screening method since 1998. It began using cultured skin cells but switched to blood samples three years ago. Other members of the research group are chemistry professor Michael Gelb, pediatrics professor C. Ronald Scott, chemistry graduate student Ding Wang and chemistry postdoctoral researcher Yijun Li. The work is supported by grants from the National Institutes of Health and Genzyme Corp. of Cambridge, Mass.

Turecek discusses the team’s work March 28 at the American Chemical Society national meeting during a session honoring Richard Caprioli, a Vanderbilt University biochemist who is receiving the society’s Field and Franklin Award for Outstanding Achievement in Mass Spectrometry.

Other diseases eventually can be added to those being screened for, Turecek said, and it could be possible to screen for even more with additional spectrometer runs for a given sample.

"These diseases are such a tragedy," he said. "If we can find them early enough to stop further damage, we can improve the quality of life for these kids."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>