Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel newborn screening can open door to treating rare but devastating diseases


Rare metabolic diseases such as Tay-Sachs, Fabry and Gaucher syndromes are caused by enzyme deficiencies and typically have crippling, even fatal, consequences starting at very early ages. Now a team of University of Washington scientists has developed a relatively simple screening process to detect enzyme deficiencies in newborns that will allow treatment to begin before too much damage has been done.

"All of the damage from these diseases is permanent, so if you can start treatment early, in a few weeks or months, you can begin to minimize the damage," said Frantisek Turecek, a UW chemistry professor.

The technique uses a spot of blood drawn from a baby’s heel and dried on a paper card. A 2-millimeter section is punched out of the spot, then is rehydrated, the target enzymes are incubated and then measured using tandem mass spectrometry, a means of determining a substance’s chemical makeup and quantity. The sample can be screened for perhaps 15 enzyme deficiencies at the same time, and the entire process typically will take less than two days, Turecek said

So far the screening method has been effective in detecting seven diseases – Krabbe, Pompe, Niemann-Pick, Gaucher, Fabry, Tay-Sachs and Hurler syndromes – associated with enzyme deficiencies within structures called lysosomes, which break down large molecules in most cells.

In each of the diseases, babies typically are symptom free for the first few months to a year of life and then begin to show signs of the disease. The effects can appear gradually over many years or can accumulate rapidly, with the worst cases causing mental retardation, blindness and finally death by the age of 5 or 6. The diseases begin when a missing link – a deficient enzyme – in the lysosome’s biochemical chain causes waste material to accumulate in the cell.

"It’s like the garbage collectors have all gone on strike," Turecek said. "The garbage builds up, the cell struggles and eventually it dies."

The diseases are relatively rare, and typically the greatest risk lies with certain populations. Tay-Sachs, for instance, occurs most frequently in descendants of central and eastern European Jews, and about one in 30 American Jews carries the Tay-Sachs gene, an occurrence about 100 times greater than for other ethnic groups. Non-Jewish French-Canadians and Cajuns of Louisiana have a similarly elevated risk.

Some of the telltale symptoms can be very similar among all these diseases, making a medical diagnosis difficult, particularly early in life when the symptoms are not readily apparent. The new screening method will allow precise diagnosis very early, so newly developed pharmaceutical treatments can be administered in time to repair the break in the lysosome’s biochemical chain and stop further damage.

After an initial investment in mass spectrometry equipment, the new screening should have a relatively low cost, perhaps 5 cents per analysis for chemicals and materials, Turecek said. He estimates one tandem mass spectrometer could process 85,000 screenings a year, equivalent to the state of Washington’s annual birth rate.

The UW research team has been working toward a new screening method since 1998. It began using cultured skin cells but switched to blood samples three years ago. Other members of the research group are chemistry professor Michael Gelb, pediatrics professor C. Ronald Scott, chemistry graduate student Ding Wang and chemistry postdoctoral researcher Yijun Li. The work is supported by grants from the National Institutes of Health and Genzyme Corp. of Cambridge, Mass.

Turecek discusses the team’s work March 28 at the American Chemical Society national meeting during a session honoring Richard Caprioli, a Vanderbilt University biochemist who is receiving the society’s Field and Franklin Award for Outstanding Achievement in Mass Spectrometry.

Other diseases eventually can be added to those being screened for, Turecek said, and it could be possible to screen for even more with additional spectrometer runs for a given sample.

"These diseases are such a tragedy," he said. "If we can find them early enough to stop further damage, we can improve the quality of life for these kids."

Vince Stricherz | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>