Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cheaper and simpler keyhole surgery


Endoscopic surgery brings many advantages for patients but is very difficult for the surgeon. Working at the Academic Medical Centre in Amsterdam, Joris Jaspers has developed two instruments which make this approach easier and also cheaper than with existing surgical robotics. Jaspers is awarded his doctorate on Wednesday 22 March at Delft University of Technology.

Endoscopic operations (or keyhole surgery) are much less stressful for the patient and give a better cosmetic result than ‘open’ surgery. But on the other hand, it is very difficult for the surgeon to carry out keyhole surgery. This is due to the disruption of hand-eye coordination, as the surgeon has to operate via a 2D image on a monitor. Moreover, the video camera has to be operated by an assistant and the work must be done using long and rigid instruments that provide little freedom of movement. The existing robot systems that have been developed to solve the aforementioned problems are complex, expensive and do not provide the required (force) feedback to the surgeon.

The aim of Joris Jaspers’ research project was to develop simple mechanical alternatives to these complex robotic systems, and also to test them. Jaspers is a doctoral student at the department of Mechanical Engineering of Delft University of Technology, but the greater part of his work is conducted at the Academic Medical Centre (AMC) in Amsterdam, where in recent years he has developed and evaluated two instruments in collaboration with surgeons.

The first instrument is a camera and instrument holder. Using this mechanical arm the surgeon can operate the camera himself (with one hand), thus allowing him to conduct the operation by himself without a (camera) assistant. A test showed that this enabled ‘solo surgery’ and that it even brought advantages in comparison to surgery using an assistant.

The second instrument developed by Jaspers is a mechanical manipulator for operating the various instruments used in keyhole surgery. Two mechanical arms, provided with artificial ‘wrist joints’ for extra freedom of movement, transmit the surgeon’s hand movements exactly onto the instruments. This is achieved using rods, cables and parallelogram constructions.

This mechanical manipulator thus fulfils a similar function to the surgical robot systems, but in a simpler and cheaper manner. In a test carried out with experienced medical students, the manipulator was compared to the existing (rigid) instruments. This study showed that far fewer actions were needed when using the manipulator and that fewer mistakes were made than with the existing instruments.

Jaspers will now further develop this mechanical manipulator, supported by funding from the Ministry of Economic Affairs and in collaboration with engineering firms. Work on his camera and instrument holder is now complete and it will be commercially available in the near future.

Frank Nuijens | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>