Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disposable catheter breakthrough, a world first

08.02.2006

A unique low cost disposable solid-state catheter that can measure swallowing pressure has been developed by a University of South Australia research team using intelligent manufacturing processes that eliminate the infection risks posed by existing catheters.

Believed to be the first of its kind in the world, the catheter is one of the new products being developed in the emerging field of bio micro-electro-mechanical systems, or BioMEMS, which have applications in the biomedical field.

The new catheter has many advantages over existing catheters, according to UniSA research fellow Dr Hung-Yao Hsu, who is developing the catheter with industry partner, the Women’s and Children’s Hospital (WCH).

"Current catheters rely on the transmission of pressure via water filled lumina to transducers external to the body. Each lumen is like a garden hose with water running through. If the outlet of the hose is blocked suddenly, the pressure inside will build up and generate a pressure wave back to the tap end of the hose where it can then be sensed. The working principle behind the existing water perfusion catheter is the same as the watering hose. Because fluid is always flowing, patients sometimes feel uncomfortable and turn their bodies over, which increases the risk of inhaling fluid into their airway," Dr Hsu said.

"Existing catheters also need to be recalibrated before each use, but posture changes, movement and fluctuation in the flow rate can cause variations in pressure, which mean that the accuracy of measurement cannot be guaranteed. In addition, dampening of the pressure signal leads to under-recording of peak swallowing pressures, so rapid pressure changes are not be picked up instantaneously and the signal may be missed, which could result in a wrong diagnosis being made.

"Another significant disadvantage of the catheters is that they are expensive and are often reused to cut medical costs. This carries a risk of transmitting disease between patients," Dr Hsu said.

"The new catheter uses solid-state sensors to measure the pressure of swallowing and eliminate the risk of fluid getting into the airway. These sensors are very responsive to pressure changes and give accurate, high resolution real-time readings. And while most catheters on the market only measure pressure, the new catheter is multifunctional, capable of recording a range of measurements," Dr Hsu said.

"In addition, it is estimated that the new catheter will be about ten times cheaper than current models, and is designed for single use only, eliminating the risks associated with reuse."

Dr Hsu said that after more than two years of hard work and dedication, the catheter has passed the validation of a major milestone, with the design concept being verified through rigorous tests in laboratories and in-vivo tests on humans.

Working with Dr Hsu were Dr Taher Omari and his team at WCH, who provided the catheter specifications and medical consultancy to help with the design of the disposable catheter and conducted in-progress tests and the final in-vivo tests to verify the design.

Sensor samples for this research were provided free of charge from The Silicon Microstructures Inc in California, USA.

The catheter project is moving towards commercialisation and Dr Hsu expects the first disposable catheter to be launched in two years’ time.

"The new catheter will have important outcomes for improved health and comfort of patients, as well as significant savings in the cost of health care, both nationally and internationally," Dr Hsu said.

UniSA researchers working with Dr Hsu include Dr Alex Hariz and a team of research assistants and students, with support from BioMEMS group members Professor Grier Lin, Professor Malcolm Haskard and Associate Professor Dennis Mulcahy.

Geraldine Hinter | EurekAlert!
Further information:
http://www.unisa.edu.au
http://www.researchaustralia.com.au/

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>