Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disposable catheter breakthrough, a world first

08.02.2006

A unique low cost disposable solid-state catheter that can measure swallowing pressure has been developed by a University of South Australia research team using intelligent manufacturing processes that eliminate the infection risks posed by existing catheters.

Believed to be the first of its kind in the world, the catheter is one of the new products being developed in the emerging field of bio micro-electro-mechanical systems, or BioMEMS, which have applications in the biomedical field.

The new catheter has many advantages over existing catheters, according to UniSA research fellow Dr Hung-Yao Hsu, who is developing the catheter with industry partner, the Women’s and Children’s Hospital (WCH).

"Current catheters rely on the transmission of pressure via water filled lumina to transducers external to the body. Each lumen is like a garden hose with water running through. If the outlet of the hose is blocked suddenly, the pressure inside will build up and generate a pressure wave back to the tap end of the hose where it can then be sensed. The working principle behind the existing water perfusion catheter is the same as the watering hose. Because fluid is always flowing, patients sometimes feel uncomfortable and turn their bodies over, which increases the risk of inhaling fluid into their airway," Dr Hsu said.

"Existing catheters also need to be recalibrated before each use, but posture changes, movement and fluctuation in the flow rate can cause variations in pressure, which mean that the accuracy of measurement cannot be guaranteed. In addition, dampening of the pressure signal leads to under-recording of peak swallowing pressures, so rapid pressure changes are not be picked up instantaneously and the signal may be missed, which could result in a wrong diagnosis being made.

"Another significant disadvantage of the catheters is that they are expensive and are often reused to cut medical costs. This carries a risk of transmitting disease between patients," Dr Hsu said.

"The new catheter uses solid-state sensors to measure the pressure of swallowing and eliminate the risk of fluid getting into the airway. These sensors are very responsive to pressure changes and give accurate, high resolution real-time readings. And while most catheters on the market only measure pressure, the new catheter is multifunctional, capable of recording a range of measurements," Dr Hsu said.

"In addition, it is estimated that the new catheter will be about ten times cheaper than current models, and is designed for single use only, eliminating the risks associated with reuse."

Dr Hsu said that after more than two years of hard work and dedication, the catheter has passed the validation of a major milestone, with the design concept being verified through rigorous tests in laboratories and in-vivo tests on humans.

Working with Dr Hsu were Dr Taher Omari and his team at WCH, who provided the catheter specifications and medical consultancy to help with the design of the disposable catheter and conducted in-progress tests and the final in-vivo tests to verify the design.

Sensor samples for this research were provided free of charge from The Silicon Microstructures Inc in California, USA.

The catheter project is moving towards commercialisation and Dr Hsu expects the first disposable catheter to be launched in two years’ time.

"The new catheter will have important outcomes for improved health and comfort of patients, as well as significant savings in the cost of health care, both nationally and internationally," Dr Hsu said.

UniSA researchers working with Dr Hsu include Dr Alex Hariz and a team of research assistants and students, with support from BioMEMS group members Professor Grier Lin, Professor Malcolm Haskard and Associate Professor Dennis Mulcahy.

Geraldine Hinter | EurekAlert!
Further information:
http://www.unisa.edu.au
http://www.researchaustralia.com.au/

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>