Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level

24.01.2006


Research could revolutionize care of transplant patients

Carnegie Mellon University scientist Chien Ho and his colleagues have developed a promising tool that uses magnetic resonance imaging (MRI) to track immune cells as they infiltrate a transplanted heart in the early stages of organ rejection. This pre-clinical advance, described in an upcoming issue of the Proceedings of the National Academy of Sciences (PNAS), ultimately could provide a non-invasive way to detect transplant rejection in patients.

"We have reported for the first time the ability to monitor single immune cells in a live animal using MRI. This could revolutionize the management of transplant patients," said Ho, professor of biological sciences at the Mellon College of Science.

"Successful translation of this work to the clinic ultimately will reduce the number of biopsy procedures and should greatly improve the quality of life for cardiac transplant patients, especially children," added Ho, who directs the Pittsburgh NMR Center for Biomedical Research. "Perhaps most importantly, this advance will allow doctors to provide highly personalized care that could prevent transplant rejection."

Organ transplantation is the preferred clinical approach to treat end-stage organ failure, but transplant patients face a lifetime of immunosuppressive therapy and the risk of losing the new organ due to rejection. Physicians typically monitor patients for organ rejection following a heart transplant by performing frequent heart biopsies for the first year. Heart biopsies are invasive procedures that involve threading a catheter through the jugular vein to the heart’s right ventricle and snipping out several tiny pieces of tissue. A pathologist then tests the tissue to identify the presence of immune cells (such as macrophages) as well as other pathological changes in the transplanted heart tissue that indicate the graft is being rejected by the body’s immune system.

These procedures are costly, uncomfortable and must be repeated annually for a few years to monitor and treat any rejection. Biopsies also are problematic, according to Ho, because they do not look at the whole organ. By only sampling several small areas, a biopsy may miss the area of the transplanted organ where immune cells are gathering -- one of the first signs of rejection.

Ho’s novel approach investigates transplant rejection non-invasively by observing macrophage accumulation in heart tissues using MRI.

"We were able to use MRI to visualize individual macrophages. By tracking individual cells, we also were able to observe, for the first time, that rejection progresses from the outside of the heart to the inside," said Ho. "Up to now, this phenomenon hasn’t been observed in pre-clinical or clinical research because biopsy samples are very limited in location and size."

The reported findings also have broader implications for biology and medicine, according to Ho.

"We now have the ability to visualize non-invasively and with sensitivity individual cells and their movement to targeted sites. Our new approach offers almost unlimited potential for monitoring cell therapies, such as those using stem cells, and for tracking cellular and developmental processes," Ho said.

For the research reported in PNAS, Yijen Wu, research biologist at the Pittsburgh NMR Center for Biomedical Research, tagged macrophages with nanometer (USPIO)- or micrometer (MPIO)-sized paramagnetic iron oxide particles, which are very sensitive to the magnetic fields used during MRI. Wu injected the MPIO or USPIO particles into rats that had received heart transplants three days earlier. Macrophages, which typically ingest foreign materials inside the body (bacteria, for example), incorporated the particles. Using MRI, the researchers then track tagged macrophages that infiltrate transplanted hearts. The locations of the tagged macrophages are highly defined and appear circular in shape, said Wu. This finding indicates that the new, real-time tracking method is very good at pinpointing exactly when and where rejection is taking place.

The researchers used a heterotropic heart model to study organ rejection. In this model, a rat receives a second functional heart, which is grafted into its abdomen. The rat’s native heart functions normally. In this way, the researchers can study how a transplanted heart changes through sequential stages of rejection while the rat stays healthy. This aspect of the research was conducted primarily by Qing Ye, a research biologist at the Pittsburgh NMR Center for Biomedical Research.

Ho’s team at the Pittsburgh NMR Center for Biomedical Research is now pursuing research using larger animal models. They are collaborating with researchers at the University of Pittsburgh School of Medicine, including Dr. David Cooper, professor of surgery in the Thomas E. Starzl Transplantation Institute; Dr. Jeffrey Teuteberg, assistant professor of medicine at the Cardiovascular Institute, Heart Failure/Transplantation; and Dr. Fernando Boada, associate professor in the Department of Radiology.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>