Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon develops non-invasive technique to detect transplant rejection at cellular level

24.01.2006


Research could revolutionize care of transplant patients

Carnegie Mellon University scientist Chien Ho and his colleagues have developed a promising tool that uses magnetic resonance imaging (MRI) to track immune cells as they infiltrate a transplanted heart in the early stages of organ rejection. This pre-clinical advance, described in an upcoming issue of the Proceedings of the National Academy of Sciences (PNAS), ultimately could provide a non-invasive way to detect transplant rejection in patients.

"We have reported for the first time the ability to monitor single immune cells in a live animal using MRI. This could revolutionize the management of transplant patients," said Ho, professor of biological sciences at the Mellon College of Science.

"Successful translation of this work to the clinic ultimately will reduce the number of biopsy procedures and should greatly improve the quality of life for cardiac transplant patients, especially children," added Ho, who directs the Pittsburgh NMR Center for Biomedical Research. "Perhaps most importantly, this advance will allow doctors to provide highly personalized care that could prevent transplant rejection."

Organ transplantation is the preferred clinical approach to treat end-stage organ failure, but transplant patients face a lifetime of immunosuppressive therapy and the risk of losing the new organ due to rejection. Physicians typically monitor patients for organ rejection following a heart transplant by performing frequent heart biopsies for the first year. Heart biopsies are invasive procedures that involve threading a catheter through the jugular vein to the heart’s right ventricle and snipping out several tiny pieces of tissue. A pathologist then tests the tissue to identify the presence of immune cells (such as macrophages) as well as other pathological changes in the transplanted heart tissue that indicate the graft is being rejected by the body’s immune system.

These procedures are costly, uncomfortable and must be repeated annually for a few years to monitor and treat any rejection. Biopsies also are problematic, according to Ho, because they do not look at the whole organ. By only sampling several small areas, a biopsy may miss the area of the transplanted organ where immune cells are gathering -- one of the first signs of rejection.

Ho’s novel approach investigates transplant rejection non-invasively by observing macrophage accumulation in heart tissues using MRI.

"We were able to use MRI to visualize individual macrophages. By tracking individual cells, we also were able to observe, for the first time, that rejection progresses from the outside of the heart to the inside," said Ho. "Up to now, this phenomenon hasn’t been observed in pre-clinical or clinical research because biopsy samples are very limited in location and size."

The reported findings also have broader implications for biology and medicine, according to Ho.

"We now have the ability to visualize non-invasively and with sensitivity individual cells and their movement to targeted sites. Our new approach offers almost unlimited potential for monitoring cell therapies, such as those using stem cells, and for tracking cellular and developmental processes," Ho said.

For the research reported in PNAS, Yijen Wu, research biologist at the Pittsburgh NMR Center for Biomedical Research, tagged macrophages with nanometer (USPIO)- or micrometer (MPIO)-sized paramagnetic iron oxide particles, which are very sensitive to the magnetic fields used during MRI. Wu injected the MPIO or USPIO particles into rats that had received heart transplants three days earlier. Macrophages, which typically ingest foreign materials inside the body (bacteria, for example), incorporated the particles. Using MRI, the researchers then track tagged macrophages that infiltrate transplanted hearts. The locations of the tagged macrophages are highly defined and appear circular in shape, said Wu. This finding indicates that the new, real-time tracking method is very good at pinpointing exactly when and where rejection is taking place.

The researchers used a heterotropic heart model to study organ rejection. In this model, a rat receives a second functional heart, which is grafted into its abdomen. The rat’s native heart functions normally. In this way, the researchers can study how a transplanted heart changes through sequential stages of rejection while the rat stays healthy. This aspect of the research was conducted primarily by Qing Ye, a research biologist at the Pittsburgh NMR Center for Biomedical Research.

Ho’s team at the Pittsburgh NMR Center for Biomedical Research is now pursuing research using larger animal models. They are collaborating with researchers at the University of Pittsburgh School of Medicine, including Dr. David Cooper, professor of surgery in the Thomas E. Starzl Transplantation Institute; Dr. Jeffrey Teuteberg, assistant professor of medicine at the Cardiovascular Institute, Heart Failure/Transplantation; and Dr. Fernando Boada, associate professor in the Department of Radiology.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>