Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology developed at Barrow Neurological Institute enhances MRI capabilities

06.01.2006


Researchers at Barrow Neurological Institute in Phoenix have developed a new method that allows technicians to obtain clearer Magnetic Resonance Imaging (MRI) scans with less sensitivity to patient motion.

PROPELLER is an acronym for "Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction." This method acquires data in a unique way that allows one to track the motion of the patient during the MRI scan. The motion can then be removed.

"While PROPELLER technology continues to be refined, GE has already incorporated the novel method into new medical equipment," said Jim Pipe, senior staff scientist in the MRI Department at Barrow. "We believe that PROPELLER technology will help drive the future of MRI."

There are two major applications for this method. The first is motion-insensitive imaging. For the first time, high-quality MRI scans can be collected on many segments of the population who cannot hold still (children, Parkinson’s patients, etc.). This is leading the technology to a point where patient motion, which may be the biggest obstacle to good images, is no longer a factor.

The second application for PROPELLER is stroke imaging. The technology used to detect and characterize strokes, called "Diffusion Weighted Imaging (DWI)," is extremely sensitive to even minute motion in a patient. Prior to PROPELLER, DWI images suffered in quality because the methods used to reduce this motion sensitivity also reduced image quality. With PROPELLER DWI, small strokes are much easier to detect, grade and follow during treatment.

Jennifer Kennedy | EurekAlert!
Further information:
http://www.stjosephs-phx.org
http://www.chw.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>