Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology developed at Barrow Neurological Institute enhances MRI capabilities

06.01.2006


Researchers at Barrow Neurological Institute in Phoenix have developed a new method that allows technicians to obtain clearer Magnetic Resonance Imaging (MRI) scans with less sensitivity to patient motion.

PROPELLER is an acronym for "Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction." This method acquires data in a unique way that allows one to track the motion of the patient during the MRI scan. The motion can then be removed.

"While PROPELLER technology continues to be refined, GE has already incorporated the novel method into new medical equipment," said Jim Pipe, senior staff scientist in the MRI Department at Barrow. "We believe that PROPELLER technology will help drive the future of MRI."

There are two major applications for this method. The first is motion-insensitive imaging. For the first time, high-quality MRI scans can be collected on many segments of the population who cannot hold still (children, Parkinson’s patients, etc.). This is leading the technology to a point where patient motion, which may be the biggest obstacle to good images, is no longer a factor.

The second application for PROPELLER is stroke imaging. The technology used to detect and characterize strokes, called "Diffusion Weighted Imaging (DWI)," is extremely sensitive to even minute motion in a patient. Prior to PROPELLER, DWI images suffered in quality because the methods used to reduce this motion sensitivity also reduced image quality. With PROPELLER DWI, small strokes are much easier to detect, grade and follow during treatment.

Jennifer Kennedy | EurekAlert!
Further information:
http://www.stjosephs-phx.org
http://www.chw.edu

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>