Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain scan technology could save babies’ lives

20.12.2005


A revolutionary portable brain scanner under development could aid the treatment, and in some cases help save the lives, of premature and newborn babies in intensive care.

By providing vital information about brain function at the cot side, the scanner avoids the need to move critically ill babies to conventional scanning facilities, which may involve sedating them and has a degree of risk. The data produced by the new scanner can be used to diagnose and assess conditions such as brain haemorrhages and brain damage, and to inform decisions on effective treatment options.

A prototype of the scanner, called MONSTIR, has been developed by researchers at UCL (University College London) with funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Wellcome Trust. Now, also with EPSRC funding, the team are aiming to reduce the size of the scanner and improve its speed of operation.

Currently, there are two main ways of performing brain scans on small babies. Magnetic resonance imaging (MRI) can provide data on brain function, but MRI scanners are large and static, and the baby may need to be sedated and wheeled to the scanner for the procedure to be carried out. The other alternative, ultrasound, can be performed at the cot side and is effective at revealing brain anatomy, but cannot show how the brain is actually functioning, e.g. in terms of oxygen supply and blood flow.

Combining the advantages of MRI and ultrasound but avoiding their disadvantages, MONSTIR, the first scanner of its kind in the world, uses an innovative technique called optical tomography to generate images showing how the brain is working. In optical tomography, light passes through body tissue and is then analysed by computer to provide information about the tissue.

A helmet incorporating 32 light detectors and 32 sources of completely safe, low-intensity laser light is placed on the baby’s head. The sources produce short flashes and the detectors measure the amount of light that reaches them through the brain and the time the light takes to travel. A software package also developed with EPSRC funding uses this information to build up a 3D image. This can show which parts of the brain are receiving oxygen, where blood is situated, evidence of brain damage etc.

MONSTIR is the size of a fridge-freezer and takes around 8 minutes to generate an image. The aim is to produce a version that is half this size, 5 times faster, even more accurate and geared for clinical use. The potential use of the technology in breast imaging to aid cancer prevention and treatment is also being trialled.

Dr Adam Gibson is a key member of the multi-disciplinary MONSTIR team at UCL that includes medics, physiologists and mathematicians. He says: “The technology we’re developing has the potential to produce high-quality images at the cot side and is also cheaper than MRI. It could make an important contribution to the care and treatment of critically ill babies. Scanners could be available commercially within a few years.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>