Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microchip technology for medical imaging biomarkers of disease

16.12.2005

A collaboration between scientists at UCLA, Caltech, Stanford, Siemens and Fluidigm have developed a new technology using integrated microfluidics chips for simplifying, lowering the cost and diversifying the types of molecules used to image the biology of disease with the medical imaging technology, Positron Emission Tomography (PET). These molecules are used with PET to diagnostically search throughout the body to look for (image) the molecular errors of disease and to guide the development of new molecular therapeutics.

PET is a new generation of medical imaging for examining the biology of disease that has been shown to dramatically improve the detection of cancer, stage the extent of cancer throughout the body, detect recurrence of cancer and to help select the right therapy for individual patients.

In Alzheimer’s disease, PET has been shown to have a 93% accuracy in detecting Alzheimer’s about three years before the conventional diagnosis of "Probable Alzheimer’s", when integrated into the clinical workup of patients. In addition, PET has been shown to detect Alzheimer’s and other neurological disease years before even symptoms are expressed. PET is also employed to determine which patients with cardiovascular disease will benefit from bypass surgery and angioplasty.

These and other clinical uses of PET employ a labeled version of the sugar glucose, called Fluorodeoxyglucose (FDG). Glucose is a critical fuel for cells throughout the body to perform their normal functions. For example, 95% of the energy for the brain to function comes from glucose. In addition, cancer cells increase their metabolism of glucose about 25 fold. There were about three million clinical PET studies performed in clinical services throughout the world in 2005.

Published this week in the journal Science, scientists demonstrated a new technology of a programmable chip that can dramatically accelerate the development of many new molecular imaging molecules for PET. As a proof of principle, this group of academic and commercial scientists demonstrated that FDG could be synthesized on a "stamp-size" chip. These chips have a design similar to integrated electronic circuits, except they are made up of fluid channels, chambers and values (switches) that can carry out many chemical operations to synthesize and label molecules for PET imaging. All the operations of the chip are controlled and executed by a PC.

FDG was produced on the chip and used to image glucose metabolism in a mouse with a specially designed PET scanner for mice produced by Siemens, called a microPET. The Science paper also illustrated that this technology can also produce the amount of FDG required for human studies. More importantly, the paper illustrates a new base technology for producing and delivering a diverse array of molecular imaging molecules and labeled drugs for use with PET to examine the biology of many diseases for molecular diagnostics and to guide the development of new molecular therapeutics (drugs).

"Chemists synthesize molecules in a lab by mixing chemicals in beakers and repeating experiments many times, but one day soon they’ll sit at a PC and carry out chemical synthesis with the digital control, speed and flexibility of today’s world of electronics using a tiny integrated microfluidic chip," said Hsian-Rong Tseng, Ph.D, assistant professor of molecular and medical pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA.

There is a vast distribution of manufacturing sites throughout the world producing PET molecular imaging molecules for hospitals, universities and pharmaceutical companies. The goal is to integrate these new chips into a small control device operated by a PC that will be commercially produced. Then to ship chips to users so they can produce whatever molecules they choose for molecular imaging with PET. These chips will be an enabling technology to fuel growth in the number and diversity of imaging molecules and applications of PET in biology and pharmaceutical research and in the care of patients.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>