Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microchip technology for medical imaging biomarkers of disease

16.12.2005

A collaboration between scientists at UCLA, Caltech, Stanford, Siemens and Fluidigm have developed a new technology using integrated microfluidics chips for simplifying, lowering the cost and diversifying the types of molecules used to image the biology of disease with the medical imaging technology, Positron Emission Tomography (PET). These molecules are used with PET to diagnostically search throughout the body to look for (image) the molecular errors of disease and to guide the development of new molecular therapeutics.

PET is a new generation of medical imaging for examining the biology of disease that has been shown to dramatically improve the detection of cancer, stage the extent of cancer throughout the body, detect recurrence of cancer and to help select the right therapy for individual patients.

In Alzheimer’s disease, PET has been shown to have a 93% accuracy in detecting Alzheimer’s about three years before the conventional diagnosis of "Probable Alzheimer’s", when integrated into the clinical workup of patients. In addition, PET has been shown to detect Alzheimer’s and other neurological disease years before even symptoms are expressed. PET is also employed to determine which patients with cardiovascular disease will benefit from bypass surgery and angioplasty.

These and other clinical uses of PET employ a labeled version of the sugar glucose, called Fluorodeoxyglucose (FDG). Glucose is a critical fuel for cells throughout the body to perform their normal functions. For example, 95% of the energy for the brain to function comes from glucose. In addition, cancer cells increase their metabolism of glucose about 25 fold. There were about three million clinical PET studies performed in clinical services throughout the world in 2005.

Published this week in the journal Science, scientists demonstrated a new technology of a programmable chip that can dramatically accelerate the development of many new molecular imaging molecules for PET. As a proof of principle, this group of academic and commercial scientists demonstrated that FDG could be synthesized on a "stamp-size" chip. These chips have a design similar to integrated electronic circuits, except they are made up of fluid channels, chambers and values (switches) that can carry out many chemical operations to synthesize and label molecules for PET imaging. All the operations of the chip are controlled and executed by a PC.

FDG was produced on the chip and used to image glucose metabolism in a mouse with a specially designed PET scanner for mice produced by Siemens, called a microPET. The Science paper also illustrated that this technology can also produce the amount of FDG required for human studies. More importantly, the paper illustrates a new base technology for producing and delivering a diverse array of molecular imaging molecules and labeled drugs for use with PET to examine the biology of many diseases for molecular diagnostics and to guide the development of new molecular therapeutics (drugs).

"Chemists synthesize molecules in a lab by mixing chemicals in beakers and repeating experiments many times, but one day soon they’ll sit at a PC and carry out chemical synthesis with the digital control, speed and flexibility of today’s world of electronics using a tiny integrated microfluidic chip," said Hsian-Rong Tseng, Ph.D, assistant professor of molecular and medical pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA.

There is a vast distribution of manufacturing sites throughout the world producing PET molecular imaging molecules for hospitals, universities and pharmaceutical companies. The goal is to integrate these new chips into a small control device operated by a PC that will be commercially produced. Then to ship chips to users so they can produce whatever molecules they choose for molecular imaging with PET. These chips will be an enabling technology to fuel growth in the number and diversity of imaging molecules and applications of PET in biology and pharmaceutical research and in the care of patients.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Medical Engineering:

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

nachricht New bioimaging technique is fast and economical
21.08.2017 | Rensselaer Polytechnic Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>