Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microchip technology for medical imaging biomarkers of disease

16.12.2005

A collaboration between scientists at UCLA, Caltech, Stanford, Siemens and Fluidigm have developed a new technology using integrated microfluidics chips for simplifying, lowering the cost and diversifying the types of molecules used to image the biology of disease with the medical imaging technology, Positron Emission Tomography (PET). These molecules are used with PET to diagnostically search throughout the body to look for (image) the molecular errors of disease and to guide the development of new molecular therapeutics.

PET is a new generation of medical imaging for examining the biology of disease that has been shown to dramatically improve the detection of cancer, stage the extent of cancer throughout the body, detect recurrence of cancer and to help select the right therapy for individual patients.

In Alzheimer’s disease, PET has been shown to have a 93% accuracy in detecting Alzheimer’s about three years before the conventional diagnosis of "Probable Alzheimer’s", when integrated into the clinical workup of patients. In addition, PET has been shown to detect Alzheimer’s and other neurological disease years before even symptoms are expressed. PET is also employed to determine which patients with cardiovascular disease will benefit from bypass surgery and angioplasty.

These and other clinical uses of PET employ a labeled version of the sugar glucose, called Fluorodeoxyglucose (FDG). Glucose is a critical fuel for cells throughout the body to perform their normal functions. For example, 95% of the energy for the brain to function comes from glucose. In addition, cancer cells increase their metabolism of glucose about 25 fold. There were about three million clinical PET studies performed in clinical services throughout the world in 2005.

Published this week in the journal Science, scientists demonstrated a new technology of a programmable chip that can dramatically accelerate the development of many new molecular imaging molecules for PET. As a proof of principle, this group of academic and commercial scientists demonstrated that FDG could be synthesized on a "stamp-size" chip. These chips have a design similar to integrated electronic circuits, except they are made up of fluid channels, chambers and values (switches) that can carry out many chemical operations to synthesize and label molecules for PET imaging. All the operations of the chip are controlled and executed by a PC.

FDG was produced on the chip and used to image glucose metabolism in a mouse with a specially designed PET scanner for mice produced by Siemens, called a microPET. The Science paper also illustrated that this technology can also produce the amount of FDG required for human studies. More importantly, the paper illustrates a new base technology for producing and delivering a diverse array of molecular imaging molecules and labeled drugs for use with PET to examine the biology of many diseases for molecular diagnostics and to guide the development of new molecular therapeutics (drugs).

"Chemists synthesize molecules in a lab by mixing chemicals in beakers and repeating experiments many times, but one day soon they’ll sit at a PC and carry out chemical synthesis with the digital control, speed and flexibility of today’s world of electronics using a tiny integrated microfluidic chip," said Hsian-Rong Tseng, Ph.D, assistant professor of molecular and medical pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA.

There is a vast distribution of manufacturing sites throughout the world producing PET molecular imaging molecules for hospitals, universities and pharmaceutical companies. The goal is to integrate these new chips into a small control device operated by a PC that will be commercially produced. Then to ship chips to users so they can produce whatever molecules they choose for molecular imaging with PET. These chips will be an enabling technology to fuel growth in the number and diversity of imaging molecules and applications of PET in biology and pharmaceutical research and in the care of patients.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Medical Engineering:

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

nachricht SPECT/CT combined with fluorescence imaging detects micrometastases
09.05.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>