Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technique offers new look at ancient diet dogma

05.08.2005


A Penn State researcher is part of the team that developed techniques that have generated insights into dietary divergences between some of our human ancestors, allowing scientists to better understand the evolutionary path that led to the modern-day diets that humans consume. "Our new techniques are allowing us to get beyond simple dichotomies and helping us understand the processes by which dietary evolution is working," said Peter Ungar, professor of anthropology at the University of Arkansas.

Ungar and Robert Scott, postdoctoral fellow at the University of Arkansas, with colleagues at the Worcester Polytechnic Institute, State University of New York at Stony Brook, Johns Hopkins University School of Medicine and Penn State University, report their findings in the August 4, 2005 issue of the journal Nature.

The researchers, including Dr. Alan Walker, Evan Pugh Professor of Biological Anthropology and Biology, Penn State, investigated microscopic wear on the teeth of two species of ancient hominims – Australopithecus africanus, which lived between 3.3 and 2.3 million years ago, and Paranthropus robustus, which lived between 2 and 1.5 million years ago. The pits and scratches found on the teeth offer a visual history of the type of food consumed by the tooth’s owner. Pits indicate a diet of hard, brittle foods, like nuts and seeds, while scratches imply a diet of tough foods, like leaves and possibly meat.

Traditional examinations of these ancient teeth – counting pits and lines on a black and white electron micrograph image – suggested that A. africanus ate tough foods and P. robustus dined on hard, brittle fare. However, the researchers used a new technique developed by Ungar and his colleagues that combines engineering software, scale-sensitive fractal analysis and a scanning confocal microscope to create a reproducible texture analysis for teeth – and the analysis tells a more complete story.

The researchers looked at both roughness, or complexity, and directionality in the teeth they examined.

"Since food objects interact with teeth, we have different kinds of complexity in different diets. Directionality also correlates with diet," Scott said. Hard foods like nuts and seeds tend to lead to more complex tooth profiles, while tough foods like leaves lead to more scratches, which corresponds with directionality.

The confocal microscope and engineering software allow the researchers to take three-dimensional coordinates of the entire tooth and form a detailed image of the surface. When these images are combined, they can use fractal analysis to examine patterns in the tooth wear. The analysis showed that the two species had significant amounts of overlap in their diets and that while P. robustus had more complexity in its tooth wear, indicating that it ate more hard and brittle foods than A. africanus, it ate tough foods as well.

The researchers believe that this indicates that the species frequently ate the same types of foods, but that in times of scarcity or seasonal changes, P. robustus changed its diet to include foods that differed from those of A. africanus.

"The difference in their evolution in terms of diet is not driven by their preferences, but by scarcity," Ungar said. "It gives you a whole new way of thinking about dietary adaptation."

The researchers credit the new method of examining microscopic wear on teeth with allowing them to gain new insights into dietary evolution. "The old technique was subject to observer error, so we couldn’t get a handle on whether the variation we observed was real or the result of observer error in data acquisition," Ungar said. "The new technique is free of subjective observer error, so the variation we see is real. This allows us to actually look at within-species variation. We can finally get beyond ’these differed’ and start to understand how much they differed and overlapped, and what this means in terms of their adaptations and evolution."

"This technique does the same thing as finding new fossils," Scott said. The researchers examined the teeth, approached the pits and scratches with a new technique and drew new conclusions from the data. "We can say things that we could never say before," he said.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>