Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel technique offers new look at ancient diet dogma


A Penn State researcher is part of the team that developed techniques that have generated insights into dietary divergences between some of our human ancestors, allowing scientists to better understand the evolutionary path that led to the modern-day diets that humans consume. "Our new techniques are allowing us to get beyond simple dichotomies and helping us understand the processes by which dietary evolution is working," said Peter Ungar, professor of anthropology at the University of Arkansas.

Ungar and Robert Scott, postdoctoral fellow at the University of Arkansas, with colleagues at the Worcester Polytechnic Institute, State University of New York at Stony Brook, Johns Hopkins University School of Medicine and Penn State University, report their findings in the August 4, 2005 issue of the journal Nature.

The researchers, including Dr. Alan Walker, Evan Pugh Professor of Biological Anthropology and Biology, Penn State, investigated microscopic wear on the teeth of two species of ancient hominims – Australopithecus africanus, which lived between 3.3 and 2.3 million years ago, and Paranthropus robustus, which lived between 2 and 1.5 million years ago. The pits and scratches found on the teeth offer a visual history of the type of food consumed by the tooth’s owner. Pits indicate a diet of hard, brittle foods, like nuts and seeds, while scratches imply a diet of tough foods, like leaves and possibly meat.

Traditional examinations of these ancient teeth – counting pits and lines on a black and white electron micrograph image – suggested that A. africanus ate tough foods and P. robustus dined on hard, brittle fare. However, the researchers used a new technique developed by Ungar and his colleagues that combines engineering software, scale-sensitive fractal analysis and a scanning confocal microscope to create a reproducible texture analysis for teeth – and the analysis tells a more complete story.

The researchers looked at both roughness, or complexity, and directionality in the teeth they examined.

"Since food objects interact with teeth, we have different kinds of complexity in different diets. Directionality also correlates with diet," Scott said. Hard foods like nuts and seeds tend to lead to more complex tooth profiles, while tough foods like leaves lead to more scratches, which corresponds with directionality.

The confocal microscope and engineering software allow the researchers to take three-dimensional coordinates of the entire tooth and form a detailed image of the surface. When these images are combined, they can use fractal analysis to examine patterns in the tooth wear. The analysis showed that the two species had significant amounts of overlap in their diets and that while P. robustus had more complexity in its tooth wear, indicating that it ate more hard and brittle foods than A. africanus, it ate tough foods as well.

The researchers believe that this indicates that the species frequently ate the same types of foods, but that in times of scarcity or seasonal changes, P. robustus changed its diet to include foods that differed from those of A. africanus.

"The difference in their evolution in terms of diet is not driven by their preferences, but by scarcity," Ungar said. "It gives you a whole new way of thinking about dietary adaptation."

The researchers credit the new method of examining microscopic wear on teeth with allowing them to gain new insights into dietary evolution. "The old technique was subject to observer error, so we couldn’t get a handle on whether the variation we observed was real or the result of observer error in data acquisition," Ungar said. "The new technique is free of subjective observer error, so the variation we see is real. This allows us to actually look at within-species variation. We can finally get beyond ’these differed’ and start to understand how much they differed and overlapped, and what this means in terms of their adaptations and evolution."

"This technique does the same thing as finding new fossils," Scott said. The researchers examined the teeth, approached the pits and scratches with a new technique and drew new conclusions from the data. "We can say things that we could never say before," he said.

A’ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>