Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MR spectroscopy helps identify cancerous breast tumors

27.07.2005


Measuring the biochemical changes in breast tumors with magnetic resonance (MR) spectroscopy enables radiologists to more accurately distinguish benign tumors from cancerous ones, according to a study appearing in the August issue of the journal Radiology.

"Adding spectroscopy to breast MR examinations will not only reduce concern over possible missed cancers and unnecessary biopsy procedures, it may also improve the efficiency and quality of patient care," said co-author Sina Meisamy, M.D., a postdoctoral fellow at the University of Minnesota Center for Magnetic Resonance Research in Minneapolis.

MR imaging of the breasts has a high rate of sensitivity (94 percent – 100 percent) for detecting tumors, but a variable rate of specificity (37 percent – 97 percent) for distinguishing malignant from benign tumors.

MR spectroscopy uses the same magnet and electronics as MR imaging, but with specialized methods that produce a "spectrum" identifying different chemical compounds in the tissues. MR spectroscopy has been shown to be useful for looking at various disorders, including cancer, Alzheimer’s disease, diabetes and certain inflammatory and ischemic diseases. Generally used for the brain, spectroscopy poses no known health risk to patients and typically adds only seven to 10 minutes to the MR procedure.

For the study, four radiologists evaluated 55 breast MR imaging cases that had findings confirmed through earlier biopsies. The evaluations were done with and without MR spectroscopy. The addition of spectroscopy resulted in more cancerous tumors detected (from 87 percent to 94 percent), a higher success rate for distinguishing benign from malignant tumors (from 51 percent to 57 percent) and a greater agreement among the radiologists on their findings. Also, with the addition of spectroscopic readings, two of the four radiologists had significantly improved sensitivity to detect cancerous tumors and all four participants achieved significantly improved accuracy in assigning a probability of malignancy.

"Spectroscopy gives us an additional piece of information about the biochemical composition of the tumor," explained senior author Michael Garwood, Ph.D., associate director of the Center for Magnetic Resonance Research and the Lillian Quist - Joyce Henline Chair in Biomedical Research Professor of Radiology at the University of Minnesota. "When the standard MR imaging exam is inconclusive, the spectroscopy measurement can improve the rate of detecting a cancerous breast tumor."

Doug Dusik | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>