Portable molecular detection tool to revolutionise medical diagnosis

A portable, versatile and low-cost molecular detection tool being developed by a team of European researchers promises to revolutionise the diagnosis of diseases such as cancer and open up new applications in sectors as diverse as environmental protection, chemical analysis and food safety.

Working in the field of micro- and nano-technologies, the IST programme-funded BioFinger project is due to begin testing its state-of-the-art system over the summer amid expectations for a commercial product to be available on the market within two to three years.

“What we are creating is a generic, highly precise and highly versatile tool to detect and analyse molecules in the blood and other fluids using nano and micro cantilevers,” explains project coordinator Joan Bausells at the Consejo Superior de Investigaciones Cientificas in Spain.

Nanocantilevers, smaller than the surface of a fly’s eye, and their larger counterparts microcantilevers, function as sensors to detect molecules providing in the medical world, for example, a way to rapidly and accurately diagnose disease. When coated with antibodies they bend and resonate to changes in surface tension and mass when fluids containing disease-related protein molecules attach to them. By seeing whether or not the cantilevers react, doctors would be able to determine whether or not a disease is present.

Though much research has been carried out into cantilevers, it has focused principally on creating large-scale tools for use inside laboratories.

“You can’t carry those around with you, so what we are developing is the first portable device that will allow doctors to diagnose diseases on the spot almost immediately,” Bausells says.

During trials at Cork University Hospital in Ireland this summer, the microcantilever version of the system will be used to detect a protein associated with prostate cancer, while the nanocantilever system, which can detect a single molecule, will be used to test blood samples for interleukin 6, a protein associated with inflammation.

The BioFinger tool incorporates the cantilevers on a microchip that is disposable after each use, allowing it to be reconfigured with new on-chip cantilevers to detect different substances. The analysis, which can be performed anywhere, anytime, takes between 15 and 20 minutes, “considerably less than the hours or days” it takes to analyse a blood sample using traditional in-lab methods, the coordinator notes. In addition, the system is likely to be considerably cheaper than traditional diagnosis techniques with each disposable chip expected to cost around 8 euros.

“It is also extremely versatile,” Bausells notes. “It could be used to detect virtually any disease, as a pregnancy test or even to determine blood types. Outside of the medical field, it could be used to analyse chemicals, detect bacteria in food or test for water pollution.”

Media Contact

Tara Morris alfa

More Information:

http://istresults.cordis.lu/

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors