Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bake, bake, bake a bone

09.07.2008
Individual bone implants whose structure resembles that of the natural bone can now be produced quite easily.

First, a simulation program calculates the bone’s internal structure and porosity, then a rapid prototyping machine “bakes” the implant from metal powder.

Scientists have learnt many things from nature – for example, the structure of a bone. Bones are very light but nonetheless able to withstand extremely heavy loads. The inside of a bone is like a sponge. It is particularly firm and compact in certain places, and very porous in others. The lightweight construction industry is especially interested in copying this construction method.

Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research therefore developed a simulation program that calculates the internal structure and density distribution of the bone material. From this, the scientists were able to derive the material structure for other components. The program simulates how the structure needs to be built in order to meet the specified requirements.

The researchers have now managed to put these simulations successfully into practice. Engineers can produce complex components with the aid of rapid prototyping technology. This involves coating a surface with wafer-thin layers of special metal powder. A laser beam heats – or sinters – the powdered metal in the exact places that need to be firm. “It’s like baking a cake,” says Andreas Burblies, spokesman for the Fraunhofer Numerical Simulation of Products, Processes Alliance.

Any remaining loose powder is subsequently removed. “The end product is an open-pored element,” explains Burblies. “Each point possesses exactly the right density and thus also a certain stability.” The method allows the engineers to produce particularly lightweight components – customized for each application – that are also extremely robust. In the meantime, the researchers have further enhanced the process to the point where they can actually change the internal structure of the parts after production by means of precision drilling.

“We can manufacture and adapt the parts exactly as required,” says Burblies. This makes the technique very attractive to a number of industries, among them the manufacturers of bone implants. It is easy to produce individual implants with an internal structure that resembles the patient’s bone.

Metal powders made of biomaterials such as titanium and steel alloys make it possible to reconstruct other bone elements, such as parts of the knee. And it goes without saying that the lightweight construction industry, especially aircraft, automobile and machine manufacturers, all benefit from the robust workpieces, as they are better able to withstand stress of every kind.

Press Office | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/07/ResearchNews072008Topic2.jsp

More articles from Medical Engineering:

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>