Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bake, bake, bake a bone

09.07.2008
Individual bone implants whose structure resembles that of the natural bone can now be produced quite easily.

First, a simulation program calculates the bone’s internal structure and porosity, then a rapid prototyping machine “bakes” the implant from metal powder.

Scientists have learnt many things from nature – for example, the structure of a bone. Bones are very light but nonetheless able to withstand extremely heavy loads. The inside of a bone is like a sponge. It is particularly firm and compact in certain places, and very porous in others. The lightweight construction industry is especially interested in copying this construction method.

Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research therefore developed a simulation program that calculates the internal structure and density distribution of the bone material. From this, the scientists were able to derive the material structure for other components. The program simulates how the structure needs to be built in order to meet the specified requirements.

The researchers have now managed to put these simulations successfully into practice. Engineers can produce complex components with the aid of rapid prototyping technology. This involves coating a surface with wafer-thin layers of special metal powder. A laser beam heats – or sinters – the powdered metal in the exact places that need to be firm. “It’s like baking a cake,” says Andreas Burblies, spokesman for the Fraunhofer Numerical Simulation of Products, Processes Alliance.

Any remaining loose powder is subsequently removed. “The end product is an open-pored element,” explains Burblies. “Each point possesses exactly the right density and thus also a certain stability.” The method allows the engineers to produce particularly lightweight components – customized for each application – that are also extremely robust. In the meantime, the researchers have further enhanced the process to the point where they can actually change the internal structure of the parts after production by means of precision drilling.

“We can manufacture and adapt the parts exactly as required,” says Burblies. This makes the technique very attractive to a number of industries, among them the manufacturers of bone implants. It is easy to produce individual implants with an internal structure that resembles the patient’s bone.

Metal powders made of biomaterials such as titanium and steel alloys make it possible to reconstruct other bone elements, such as parts of the knee. And it goes without saying that the lightweight construction industry, especially aircraft, automobile and machine manufacturers, all benefit from the robust workpieces, as they are better able to withstand stress of every kind.

Press Office | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/07/ResearchNews072008Topic2.jsp

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>