Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bake, bake, bake a bone

09.07.2008
Individual bone implants whose structure resembles that of the natural bone can now be produced quite easily.

First, a simulation program calculates the bone’s internal structure and porosity, then a rapid prototyping machine “bakes” the implant from metal powder.

Scientists have learnt many things from nature – for example, the structure of a bone. Bones are very light but nonetheless able to withstand extremely heavy loads. The inside of a bone is like a sponge. It is particularly firm and compact in certain places, and very porous in others. The lightweight construction industry is especially interested in copying this construction method.

Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research therefore developed a simulation program that calculates the internal structure and density distribution of the bone material. From this, the scientists were able to derive the material structure for other components. The program simulates how the structure needs to be built in order to meet the specified requirements.

The researchers have now managed to put these simulations successfully into practice. Engineers can produce complex components with the aid of rapid prototyping technology. This involves coating a surface with wafer-thin layers of special metal powder. A laser beam heats – or sinters – the powdered metal in the exact places that need to be firm. “It’s like baking a cake,” says Andreas Burblies, spokesman for the Fraunhofer Numerical Simulation of Products, Processes Alliance.

Any remaining loose powder is subsequently removed. “The end product is an open-pored element,” explains Burblies. “Each point possesses exactly the right density and thus also a certain stability.” The method allows the engineers to produce particularly lightweight components – customized for each application – that are also extremely robust. In the meantime, the researchers have further enhanced the process to the point where they can actually change the internal structure of the parts after production by means of precision drilling.

“We can manufacture and adapt the parts exactly as required,” says Burblies. This makes the technique very attractive to a number of industries, among them the manufacturers of bone implants. It is easy to produce individual implants with an internal structure that resembles the patient’s bone.

Metal powders made of biomaterials such as titanium and steel alloys make it possible to reconstruct other bone elements, such as parts of the knee. And it goes without saying that the lightweight construction industry, especially aircraft, automobile and machine manufacturers, all benefit from the robust workpieces, as they are better able to withstand stress of every kind.

Press Office | alfa
Further information:
http://www.zv.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/07/ResearchNews072008Topic2.jsp

More articles from Medical Engineering:

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

nachricht SPECT/CT combined with fluorescence imaging detects micrometastases
09.05.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>