Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New logic: the attraction of magnetic computation

European researchers are the first to demonstrate functional components that exploit the magnetic properties of electrons to perform logic operations. Compatible with existing microtechnology, the new approach heralds the next era of faster, smaller and more efficient electronics.

In the 1960s, Henry Moore observed that it took around 18 months for silicon chip manufacturers to shrink their technology and fit twice as many transistors into the same area of silicon.

But Moore's Law is beginning to lose its hold. According to the International Technology Roadmap for Semiconductors (ITRS), devices based on silicon-only technology will soon reach the limits of miniaturisation and power efficiency.

Chip designers and manufacturers are looking for new materials and techniques that will drive forward a new era of electronic devices and applications. An EU-funded project called MAGLOG has demonstrated for the first time the possibility of producing processors from ferromagnetic materials that are faster, smaller and more efficient than conventional silicon chips.

More than 150 years ago, Lord Kelvin found that the electrical resistance of iron changed when it was in an external magnet field, and that the change depended on the direction of the field.

This magnetoresistance effect was very small, but in 1988 Peter Grünberg and Albert Fert – joint Nobel Prize for Physics winners in 2007 – independently developed materials which exhibited much larger magnetoresistance. Their work spawned a new field of science, magnetoelectronics, or spintronics, which promises significant advances in IT and computing.

Magnetoelectronics exploit the magnetic properties or spin of electrons as well as their charge. In the presence of a magnetic field the electrons may point ‘left’ or ‘right’, which can represent bits of data, such as the binary digits 0 and 1.

MAGLOG brought together leaders in the field of magnetoelectronics to adapt the technology not just for data storage and memory, but also for computation. The project partners describe it as “memory that can think”.

The input signals at each magnetic logic gate change the magnetisation of physical structures within the cell. The magnetic field affects the electrical resistance of the structures which can be measured with a readout of ‘True’ or ‘False’, or in binary a 1 or 0.

“The main goal of MAGLOG was to show that magnetic logic gates could be produced on a conventional complementary metal-oxide-semiconductor (CMOS) platform,” says the project coordinator Guenter Reiss. “For successful commercialisation, it is critical that this novel method of data processing can be integrated into conventional chip technologies.”

Swift thinking
One production approach uses lithography to etch structures within the ferromagnetic material to produce zones where the magnetic orientation of the material ‘flips’.

This switching between two states depends on input signals and thereby enables logical operations to be performed. Cells fabricated in this way use no silicon and require no multilayer processing – they can be manufactured at very low cost on flexible materials.

Another successful production approach for magnetic logic gates remains confined to high-performance computing applications that require low power consumption, for instance battery operated devices such as mobile phones.

This form of magnetic logic gate uses structures called magnetic tunnelling junctions. Each junction is manufactured from alternating layers of ferromagnetic materials and insulators. This type of gate is programmable – it is possible to change the operator within the logic gate, for example switching an ‘and’ gate to an ‘or’ function.

“The industry is crying out for reconfigurable computing to make microprocessors more efficient,” says Reiss. “We have one of the best demonstrations of reprogramming logic gates ‘on the fly’ and could enhance the performance of a central processing unit by a factor of 10 to 100.”

Magnetic logic has other advantages over conventional microprocessors. First, such processors are ‘non-volatile’, meaning that they retain their output state even when the current is switched off.

“When you switch it on again, you are exactly where you were when the power went off,” says Reiss. “This could greatly reduce or avoid the need for booting up, which can take a long time, especially with small devices that have to load a lot of information from memory.”

Magnetoelectronic components generally consume less power than their conventional counterparts, but the non-volatility can help chips cut their consumption to the bare minimum by temporarily shutting down zones that are not in use.

Attractive market
The project was originally funded for three years to build a very simple demonstrator. The team received a six-month extension for further research into the manufacture of working logic gates integrated on a CMOS wafer.

Although MAGLOG has now ended, the partners continue to work together to bring about the birth of this next-generation microprocessor technology.

Ingenia Technology, a spin-off company from project partner Imperial College, is investigating applications for domain wall structures, such as intelligent smart cards. The cards would be able to perform a degree of data processing within the smart card's chip. This in-built ‘intelligence’ provides the card with an additional layer of security.

The partners also hope to enter the market for the application-specific integrated circuits (ASIC) typically found in mobile phones. These are chips designed for a specific application and often customised for individual customers, making them expensive.

The programmability of magnetic tunnelling junction logic gates could also allow chip designers to manufacture generic chips that are then customised through logic gate programming.

“From a generic ASIC chip you could configure it with its unique identity,” says Reiss. “We know of a project in Japan and IBM are working on this, but this is a market with huge potential. There's a tremendous need for smaller chip dimensions and less power consumption, and we think that chips with magnetic logic are the answer.”

MAGLOG received funding from the EU's Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>