Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights into Micromillimeters

03.07.2008
New high-tech imaging center “TIGA” at the University of Heidelberg / Robot “NanoZoomer” shows high-resolution images of cells and tissue

“TIGA,” the new high-tech imaging center at the University of Heidelberg founded in cooperation with the Japanese company Hamamatsu, provides deep insights: a high-tech robot makes it possible for the first time to automatically reproduce and evaluate tissue slices only micromillimeters thick – an important aid for researchers in understanding cancer or in following in detail the effect of treatment on cells and tissue.

The Hamamatsu Tissue Imaging and Analysis (TIGA) Center is a cooperative effort between the Institutes of Pathology and of Medical Biometry and Informatics at the University of Heidelberg and the Japanese company Hamamatsu Photonics. In addition, it belongs to BIOQUANT, the research center for quantitative biology at the University of Heidelberg. At its core is the imaging robot “NanoZoomer” from Hamamatsu Photonics: the robot scans the tissue slices and displays them on the monitor for researchers at ultra high resolution and in various planes.

“Technically, this has brought the fully automatic evaluation of tissue changes and approaches for new therapy within our grasp,” states Professor Dr. Peter Schirmacher, Director of the Institute for Pathology at Heidelberg University Hospital. This would represent a new milestone in pathology.

Detailed images help understand diseases

Which proteins are formed to a greater degree in cancer cells? How is tumor tissue changed during radiation treatment? Thanks to the NanoZoomer’s high-resolution images and special evaluation programs, researchers in the future will be able to evaluate tissue and cell samples more quickly and accurately and gain important new insights for therapy tailored to the individual patient, for example for breast cancer.

In the future, the robot will be able to determine changes in cells and tissue fully automatically. “The NanoZoomer represents a quantum leap in tissue research,” says Dr. Niels Grabe of the Institute for Medical Biometry and Informatics and research director at the TIGA Center.

Virtual Tissue is modeled from data

The medical IT specialists use the NanoZoomer to evaluate huge quantities of data from tissues for their research. For example, Dr. Niels Grabe and his team used data to model virtual skin tissue. “On a computer model of human skin tissue we can test whether certain substances are toxic, for example,“ explains Dr. Grabe. “In the future, this could make it easier to develop potential new drugs.”

Hamamatsu recognized the many possible applications early on, so that new technological markets have now been opened up for them. “We are happy to have found two partners in the Heidelberg Institute of Pathology and the Institute of Medical Biometry and Informatics with whom we can develop concrete clinical uses and new applications for research,” said Hideo Hiruma, Managing Director of Hamamatsu Photonics, Japan.

Contact:

Dr. Niels Grabe
Research Director at the TIGA center
Tel.: +49 6221 / 56 5143
E-Mail: niels.grabe@med.uni-heidelberg.de

Professor Dr. Peter Schirmacher
Director of the Institute for Pathology
at Heidelberg University Hospital
Phone: +49 6221 / 56 2601
E-Mail: peter.schirmacher@med.uni-heidelberg.de

Hamamatsu Photonics, Germany and Japan:
Hamamatsu Germany is the German subsidiary of Hamamatsu Photonics K.K. (Japan), a leading manufacturer of devices for the generation and measurement of infrared, visible, and ultraviolet light. These devices include photodiodes, photomultiplier tubes, scientific light sources, infrared detectors, photoconductive cells, image sensors and integrated measurement systems for science and industry. The parent company is dedicated to the advancement of photonics through extensive research. This corporate philosophy results in state-of-the-art products which are used throughout the world in scientific, industrial, and commercial applications.

Institute of Pathology, University Heidelberg:

The Institute of Pathology at the University Heidelberg contributes to patient care, teaching, advanced training, quality management and research. Key task is the diagnostic evaluation of tissues (histology) and cell preparations (cytology). The Institute analyses more than 60.000 samples from operative and conservative medicine which are an elementary component of clinical diagnostics and therapy planning. The Institute is consulting in many areas, for example tumor diagnostics.

Institute of Medical Biometry and Informatics, University Heidelberg:

The Institute of Medical Biometry and Informatics at the University Heidelberg contributes to teaching, advanced training and clinical research. Biometry is concerned with the methodology and realization of therapeutic-, diagnostic- and meta studies. Research subjects of medical informatics includes bioinformatics/systems biology, knowledge based diagnosis and therapy, the management of health data, as well as medical image processing and pattern recognition. In collaboration with the University Heilbronn, the institute is conducting Germany’s eldest curriculum on medical informatics.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | EurekAlert!
Further information:
http://www.med.uni-heidelberg.de

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>