Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer simulations help predict fracture risk

Using a Blue Gene supercomputer, scientists of ETH Zurich and the IBM Zurich Research Laboratory demonstrated the most extensive simulation yet of actual human bone structure. This achievement may lead to better clinical tools to improve the diagnosis and treatment of osteoporosis, a widespread disease that worldwide affects 1 in 3 women and 1 in 5 men over the age of 50.

With the goal of developing an accurate, powerful and fast method to automate the analysis of bone strength, scientists of the ETH Zurich Departments of Mechanical and Process Engineering and Computer Science teamed up with supercomputing experts at IBM's Zurich Research Laboratory. The breakthrough method developed by the team combines density measurements with a large-scale mechanical analysis of the innerbone microstructure.

Using large-scale, massively parallel simulations, the researchers were able to obtain a dynamic "heat map" of strain, which changes with the load applied to the bone. This map shows the clinician exactly where and under what load a bone is likely to fracture. "With that knowledge, a clinician can also detect osteoporotic damage more precisely and, by adjusting a surgical plate appropriately, can best determine the location of the damage," explains Dr. Costas Bekas of IBM's Computational Sciences team in Zurich. "This work is an excellent showcase of the dramatic potential that supercomputers can have for our everyday lives."

The joint team utilized the massively large-scale capabilities of the 8-rack Blue Gene /L supercomputer to conduct the first simulations on a 5 by 5 mm specimen of real bone. Within 20 minutes, the supercomputer simulation generated 90 Gigabytes of output data. "It is this combination of increased speed and size that will allow solving clinically relevant cases in acceptable time and unprecedented detail", says Professor Ralph Müller, Director of the ETH Zurich Institute for Biomechanics.

Going beyond static bone strength

Ten years ago, the world's most sophisticated supercomputer, called Deep Blue, would not have been able to handle the sheer size of the calculations. Even with sufficient system memory, it would have taken roughly a week of computing time - too long for meaningful impact on diagnosis and treatment.

"Ten years from now, today's supercomputers' performance will be available in desktop systems, making such simulations of bone strength a routine practice in computer tomography," predicts Dr. Alessandro Curioni, manager of the Computational Sciences group at IBM's Zurich Research Laboratory.

ETH Zurich Professor Peter Arbenz, who initiated the collaboration of the involved groups, explains that what was first needed was state of the art in numerical algorithms in order to solve extremely large problems in surprisingly short time, and that it is the first fundamental step towards clinical use of large scale bone simulations. "We are at the beginning of an exciting journey. This line of research must absolutely be continued in order to achieve our goal," he states. Scientists in future aim to advance simulation techniques to go beyond the calculation of static bone strength to the simulation of the actual formation of the fractures for individual patients, in yet another step towards the fast, reliable and early detection of people at high fracture risk.

The work "Extreme Scalability Challenges in Analyses of Human Bone Structures" by ETH scientists Peter Arbenz, Cyril Flaig, Harry van Lenthe, Ralph Mueller, Andreas Wirth and ZRL researchers Costas Bekas and Alessandro Curioni was presented at the IACM/ECCOMAS 2008 conference in Venice, Italy, on July 2.

Roman Klingler | idw
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>