Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radioactive health

19.06.2008
For decades, we have been told that exposure to radiation is dangerous. In high doses it is certainly lethal and chronic exposure is linked to the development of cancer.

But, what if a short-term controlled exposure to a low dose of radiation were good for our health. Writing in today's issue of the Inderscience publication the International Journal of Low Radiation, Don Luckey, makes the startling claim that low dose radiation could be just what the doctor ordered!

Luckey, an emeritus professor of the University of Missouri, was the nutrition consultant for NASA's Apollo 11 to 17 moon missions and has spent the last several years developing the concept of improving health through exposure to low-dose radiation.

"When beliefs are abandoned and evidence from only whole body exposures to mammals is considered, it becomes obvious that increased ionising radiation would provide abundant health," Luckey explains. He suggests that as with many nutritional elements, such as vitamins and trace metals it is possible to become deficient in radiation. "A radiation deficiency is seen in a variety of species, including rats and mice; the evidence for a radiation deficiency in humans is compelling."

In the first part of the twentieth century at a time when our understanding of radioactivity was only just emerging, health practitioners began to experiment widely with samples of radioactive materials. Then, exposure to radiation, rather than being seen as hazardous, was considered a panacea for a wide variety of ailments from arthritis to consumption.

The discovery of antibiotics and the rapid advent of the pharmaceutical industry, as well as the fact that it became apparent that exposure to high doses of radiation could be lethal led to the demise of this "alternative" approach to health.

Today, radioactivity is used in targeted therapies for certain forms of cancer, however, the use of radiation sources for treating other diseases is not currently recognised by the medical profession.

Luckey hopes to change that viewpoint and argues that more than 3000 scientific papers in the research literature point to low doses of radiation as being beneficial in human health. He points out that, as with many environmental factors, we have evolved to live successfully in the presence of ionising radiations. His own research suggests that radiation exposure can minimise infectious disease, reduce the incidence of cancer in the young, and substantially increase average lifespan.

Studies on the growth, average lifespan, and decreased cancer mortality rates of humans exposed to low-dose irradiation show improved health, explains Luckey. This represents good evidence that we live with a partial radiation deficiency and that greater exposure to radiation would improve our health, a notion supported by 130 on the health of people living in parts of the world with higher background levels of ionising radiation than average.

Luckey suggests that the medical use of small samples of partially shielded radioactive waste would provide a simple solution to radiation deficiency. Of course, there are several questions that will have to be answered before a health program based on this study could be implemented. How much should we have and what is the optimum exposure?

Evidence suggests that low dose exposure increases the number and activity of the immune system's white blood cells, boosts cytocrine and enzyme activity, and increases antibody production and so reduces the incidence of infection, assists in wound healing, and protects us from exposure to high doses of radiation.

"It is unfortunate that most literature of radiobiology involves fear and regulations about the minimum possible exposure with no regard for radiation as a beneficial agent," says Luckey, "Those who believe the Linear No Threshold (LNT) dogma have no concept about any benefits from ionising radiation. Many radiobiologists get paid to protect us from negligible amounts of ionising radiation. Our major concern is health."

Professor André Maïsseu, the journal's Editor-in-Chief, and President of the World Council of Nuclear Workers WONUC) says: "This is a very bright, interesting and important paper about the real effects of ionising radiation - radioactivity - on humans, mammals and biotopes." He adds that, the paper, "is part of the movement we - nuclear workers - promoting good science and fighting obscurantism in this scientific field.

Maïsseu points out that the European Union recently refused to support a world-wide study on related work. "This was the first time nuclear workers have asked the European Union to support a scientific study," Maïsseu says, "We received nothing yet for more than thirty years, so-called 'green' organisations have received hundreds of millions euros, and with what results?" He adds that, "It is a shame and a scandal that political reasons are being used to decide on science funding."

Albert Ang | alfa
Further information:
http://www.inderscience.com

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>