Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing unique brain maps to assist surgery and research

18.06.2008
14th Annual Meeting of the Organization for Human Brain Mapping: June 15-19, 2008

Researchers from the Howard Florey Institute in Melbourne are developing new technology to create individualised brain maps that will revolutionise diagnosis of disease and enhance the accuracy of brain surgery.

Currently researchers and neurosurgeons rely on coarse maps of the brain's structure that are based on a small number of individuals' brains after death. These maps do not allow for differences that can occur between people's brains.

The new brain mapping technology will be created by developing acquisition and analysis processes and software that will provide microscopic level investigation of individual brains.

The Florey researchers are contributing neuroscience, engineering and mathematical expertise to this project, whilst collaborators from the Neuroscience Research Institute in South Korea are providing the equipment.

It is hoped this technology will become widely available in the next two to three years.

Leader of the Neuroimaging group at the Howard Florey Institute, A/Prof Gary Egan, said his group was using one of the most powerful Magnetic Resonance Imaging (MRI) scanners in the world – an ultra-high field 7 Tesla – to help develop the new brain mapping technology.

"Microscopic images inside the living brain will transform diagnosis and treatment of diseases such as multiple sclerosis, Parkinson's disease, Alzheimer's disease and Huntington's disease," A/Prof Egan said.

"This technology will allow us to look at cortical grey matter and underlying white matter at a level previously only seen before in post-mortem brains.

"Current MRI techniques cannot show specific organisation and functional patterns in the living brain.

"For example, developmental neuronal migration defects are known to cause epilepsy, but they cannot be seen with existing MRI technology.

"Ultra-high resolution imaging will allow scientists and doctors to clearly see defects in the brain and develop therapeutic strategies to address these problems," he said.

Unfortunately, Australia does not have a 7 Tesla scanner, which is why the Howard Florey Institute and University of Melbourne scientists are collaborating with the Neuroscience Research Institute in South Korea, who own the only high resolution 7 Tesla scanner in the Asia Pacific region.

The most powerful scanners in Australia are 3 Tesla, which are accessed by the Florey scientists for other research projects.

A/Prof Egan said he hoped a 7 Tesla scanner would very soon be located in Australia as neuroimaging can assist research into all brain and mind disorders.

"Having an ultra-high field 7 Tesla in Australia would allow us to accelerate our research, which would benefit the three million Australians who experience a major episode of brain disorder every year," he added.

This research will be presented at the 14th Annual Meeting of the Organisation for Human Brain Mapping, which opened yesterday in Melbourne. This conference, supported by the Howard Florey Institute, will see the world's neuroimaging experts share their latest research and develop new collaborations.

Merrin Rafferty | EurekAlert!
Further information:
http://www.florey.edu.au
http://www.researchaustralia.com.au

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>