Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First semiconductor-based PET scanner demonstrates potential to aid in early diagnosis of disease

18.06.2008
Benefits of high-resolution images presented by researchers at SNM's 55th Annual Meeting

Evaluations of the first-ever prototype positron emission tomography (PET) brain scanner that uses semiconductor detectors indicate that the scanner could advance the quality and spatial resolution of PET imaging, according to researchers at SNM's 55th Annual Meeting.

The prototype scanner already has proven successful in better characterizing partial epilepsy and nasopharyngeal cancer. Eventually, the technology could be used to provide early-stage diagnoses of other cancers, neurological disorders and cardiovascular disease; assess patients' responses to therapies; and determine the efficacy of new drugs.

"This is an exciting development in the field of nuclear medicine," said Yuichi Morimoto, senior researcher for the Central Research Laboratory of Hitachi Ltd., Tokyo, Japan, and lead researcher of the study, Performance of a Prototype Brain PET Scanner Based on Semiconductor Detectors. "Our research indicates semiconductor scanners show great potential because of their high energy resolution and flexibility in both sizing and fine arrangement of detectors. These characteristics should lead to improved PET images and, in turn, major advances in the practice of nuclear medicine."

Molecular imaging procedures such as PET scans are noninvasive and painless medical tests that help physicians diagnose medical conditions or conduct research. PET scans involve the use of radioactive materials called radiopharmaceuticals or radiotracers, which eventually collect in the area being examined and give off energy in the form of gamma rays. This energy is detected by a PET scanner and/or probe. These devices work together with a computer to measure the amount of radiotracer absorbed and to produce special pictures offering details on the function of organs and other internal body parts down to the cellular and molecular levels.

Semiconductor-based detectors could improve PET imaging capabilities because the smaller, thinner semiconductors are easier to adjust and arrange than conventional scanners. The new technology allows for even higher spatial resolution and less "noise," or irrelevant images. The prototype semiconductor brain scanner also employs a depth of interaction (DOI) detection system, which reduces errors at the periphery of the field of view.

Researchers evaluated the physical performance of the prototype scanner and studied the technology's clinical significance in patients suffering from partial epilepsy and nasopharyngeal cancer—a relatively rare form of cancer that develops at the top of the throat, behind the nose. The results indicate that the PET scanner is feasible for clinical use and has good potential for providing the higher spatial resolution and quantitative imaging required in nuclear medicine. This device, which has been installed in Hokkaido University Hospital, is a result of successful collaboration with staff from the Department of Nuclear Medicine at Hokkaido University in Sapporo, Japan.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>