Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First semiconductor-based PET scanner demonstrates potential to aid in early diagnosis of disease

18.06.2008
Benefits of high-resolution images presented by researchers at SNM's 55th Annual Meeting

Evaluations of the first-ever prototype positron emission tomography (PET) brain scanner that uses semiconductor detectors indicate that the scanner could advance the quality and spatial resolution of PET imaging, according to researchers at SNM's 55th Annual Meeting.

The prototype scanner already has proven successful in better characterizing partial epilepsy and nasopharyngeal cancer. Eventually, the technology could be used to provide early-stage diagnoses of other cancers, neurological disorders and cardiovascular disease; assess patients' responses to therapies; and determine the efficacy of new drugs.

"This is an exciting development in the field of nuclear medicine," said Yuichi Morimoto, senior researcher for the Central Research Laboratory of Hitachi Ltd., Tokyo, Japan, and lead researcher of the study, Performance of a Prototype Brain PET Scanner Based on Semiconductor Detectors. "Our research indicates semiconductor scanners show great potential because of their high energy resolution and flexibility in both sizing and fine arrangement of detectors. These characteristics should lead to improved PET images and, in turn, major advances in the practice of nuclear medicine."

Molecular imaging procedures such as PET scans are noninvasive and painless medical tests that help physicians diagnose medical conditions or conduct research. PET scans involve the use of radioactive materials called radiopharmaceuticals or radiotracers, which eventually collect in the area being examined and give off energy in the form of gamma rays. This energy is detected by a PET scanner and/or probe. These devices work together with a computer to measure the amount of radiotracer absorbed and to produce special pictures offering details on the function of organs and other internal body parts down to the cellular and molecular levels.

Semiconductor-based detectors could improve PET imaging capabilities because the smaller, thinner semiconductors are easier to adjust and arrange than conventional scanners. The new technology allows for even higher spatial resolution and less "noise," or irrelevant images. The prototype semiconductor brain scanner also employs a depth of interaction (DOI) detection system, which reduces errors at the periphery of the field of view.

Researchers evaluated the physical performance of the prototype scanner and studied the technology's clinical significance in patients suffering from partial epilepsy and nasopharyngeal cancer—a relatively rare form of cancer that develops at the top of the throat, behind the nose. The results indicate that the PET scanner is feasible for clinical use and has good potential for providing the higher spatial resolution and quantitative imaging required in nuclear medicine. This device, which has been installed in Hokkaido University Hospital, is a result of successful collaboration with staff from the Department of Nuclear Medicine at Hokkaido University in Sapporo, Japan.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>