Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First semiconductor-based PET scanner demonstrates potential to aid in early diagnosis of disease

18.06.2008
Benefits of high-resolution images presented by researchers at SNM's 55th Annual Meeting

Evaluations of the first-ever prototype positron emission tomography (PET) brain scanner that uses semiconductor detectors indicate that the scanner could advance the quality and spatial resolution of PET imaging, according to researchers at SNM's 55th Annual Meeting.

The prototype scanner already has proven successful in better characterizing partial epilepsy and nasopharyngeal cancer. Eventually, the technology could be used to provide early-stage diagnoses of other cancers, neurological disorders and cardiovascular disease; assess patients' responses to therapies; and determine the efficacy of new drugs.

"This is an exciting development in the field of nuclear medicine," said Yuichi Morimoto, senior researcher for the Central Research Laboratory of Hitachi Ltd., Tokyo, Japan, and lead researcher of the study, Performance of a Prototype Brain PET Scanner Based on Semiconductor Detectors. "Our research indicates semiconductor scanners show great potential because of their high energy resolution and flexibility in both sizing and fine arrangement of detectors. These characteristics should lead to improved PET images and, in turn, major advances in the practice of nuclear medicine."

Molecular imaging procedures such as PET scans are noninvasive and painless medical tests that help physicians diagnose medical conditions or conduct research. PET scans involve the use of radioactive materials called radiopharmaceuticals or radiotracers, which eventually collect in the area being examined and give off energy in the form of gamma rays. This energy is detected by a PET scanner and/or probe. These devices work together with a computer to measure the amount of radiotracer absorbed and to produce special pictures offering details on the function of organs and other internal body parts down to the cellular and molecular levels.

Semiconductor-based detectors could improve PET imaging capabilities because the smaller, thinner semiconductors are easier to adjust and arrange than conventional scanners. The new technology allows for even higher spatial resolution and less "noise," or irrelevant images. The prototype semiconductor brain scanner also employs a depth of interaction (DOI) detection system, which reduces errors at the periphery of the field of view.

Researchers evaluated the physical performance of the prototype scanner and studied the technology's clinical significance in patients suffering from partial epilepsy and nasopharyngeal cancer—a relatively rare form of cancer that develops at the top of the throat, behind the nose. The results indicate that the PET scanner is feasible for clinical use and has good potential for providing the higher spatial resolution and quantitative imaging required in nuclear medicine. This device, which has been installed in Hokkaido University Hospital, is a result of successful collaboration with staff from the Department of Nuclear Medicine at Hokkaido University in Sapporo, Japan.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>