Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Enhances and Expands “Homing”and Therapeutic Potential of Cord Blood Stem Cells in Bone Marrow Transplants

10.06.2008
Rush University Medical Center researchers present pre-clinical data at international symposium June 6-7

A CD26 Inhibitor increases the efficiency and responsiveness of umbilical cord blood for bone marrow transplants and may improve care for blood cancer patients according to research from Rush University Medical Center being presented at the 6th Annual International Umbilical Cord Blood Transplantation Symposium, June 6-7 in Los Angeles.

Kent W. Christopherson II, PhD, assistant professor of medicine and researcher in the Sections of Hematology and Stem Cell Transplantation at Rush, is researching a CD26 Inhibitor, a small molecule enzyme inhibitor that enhances directional homing of stem cells to the bone marrow by increasing the responsiveness of donor stem cells to a natural homing signal. Homing is the process by which the donor stem cells find their way to the bone marrow. It is the first and essential step in stem cell transplantation.

Cord blood is increasingly being used by transplant centers as an alternative source of stem cells for the treatment of blood cancers, including myeloma, lymphoma and leukemia. The cells, which are collected from the umbilical cord after the baby is delivered and separated from the cord, are most commonly used for bone marrow transplantation when a donor from a patient’s family or an unrelated donor does not produce an appropriate bone marrow match.

The current drawback to the usage of cord blood cells is that due to the limited volume and cell number, there are generally only enough cells available from a single cord blood collection for children or very small adults. Cord blood cells also usually take longer to engraft, leaving the patient at a high risk for infection longer than donor matched transplanted marrow or peripheral blood stem cells. The goal of Christopherson’s research is to increase the transplant efficiency of umbilical cord blood and ultimately make transplant safer and available to all patients who require this treatment.

In his discussion on “Strategies to Improve Homing,” Christopherson states that results from his and other laboratories suggest “the beneficial effects of the CD26 Inhibitor usage and the potential of this technology to change hematopoietic stem cell transplantation.”

Christopherson will co-chair the session and review some of his Leukemia & Lymphoma Society funded work at the symposium in a session entitled “Basic Science and Clinical Studies Addressing Obstacles to Successful Umbilical Cord Blood Transplants (UCBT)”. He will be joined by Dr. Patrick Zweidler-McKay of the University if Texas MD Anderson Cancer Center. Zweidler-McKay will discuss his team’s work in the same session on Engraftin™, a human recombinant enzyme technology that increases the efficiency of engraftment and reduces graft failure in transplantation of cord blood derived stem cells.

Research results in animal models by Christopherson and Zweider-McKay show that both Engraftin and CD26 Inhibitor can enhance homing and rate of engraftment, which will result in reduced patient morbidity and mortality in bone marrow transplants. American Stem Cell, Inc., the developer of both technologies, plans to begin human trials in the next few months.

There are over 250,000 new cancer patients per year who require or would benefit from stem cell transplantation and as many as 20% are unable to find a blood or marrow match.

Kim Waterman | EurekAlert!
Further information:
http://ww.rush.edu

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>