Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Enhances and Expands “Homing”and Therapeutic Potential of Cord Blood Stem Cells in Bone Marrow Transplants

10.06.2008
Rush University Medical Center researchers present pre-clinical data at international symposium June 6-7

A CD26 Inhibitor increases the efficiency and responsiveness of umbilical cord blood for bone marrow transplants and may improve care for blood cancer patients according to research from Rush University Medical Center being presented at the 6th Annual International Umbilical Cord Blood Transplantation Symposium, June 6-7 in Los Angeles.

Kent W. Christopherson II, PhD, assistant professor of medicine and researcher in the Sections of Hematology and Stem Cell Transplantation at Rush, is researching a CD26 Inhibitor, a small molecule enzyme inhibitor that enhances directional homing of stem cells to the bone marrow by increasing the responsiveness of donor stem cells to a natural homing signal. Homing is the process by which the donor stem cells find their way to the bone marrow. It is the first and essential step in stem cell transplantation.

Cord blood is increasingly being used by transplant centers as an alternative source of stem cells for the treatment of blood cancers, including myeloma, lymphoma and leukemia. The cells, which are collected from the umbilical cord after the baby is delivered and separated from the cord, are most commonly used for bone marrow transplantation when a donor from a patient’s family or an unrelated donor does not produce an appropriate bone marrow match.

The current drawback to the usage of cord blood cells is that due to the limited volume and cell number, there are generally only enough cells available from a single cord blood collection for children or very small adults. Cord blood cells also usually take longer to engraft, leaving the patient at a high risk for infection longer than donor matched transplanted marrow or peripheral blood stem cells. The goal of Christopherson’s research is to increase the transplant efficiency of umbilical cord blood and ultimately make transplant safer and available to all patients who require this treatment.

In his discussion on “Strategies to Improve Homing,” Christopherson states that results from his and other laboratories suggest “the beneficial effects of the CD26 Inhibitor usage and the potential of this technology to change hematopoietic stem cell transplantation.”

Christopherson will co-chair the session and review some of his Leukemia & Lymphoma Society funded work at the symposium in a session entitled “Basic Science and Clinical Studies Addressing Obstacles to Successful Umbilical Cord Blood Transplants (UCBT)”. He will be joined by Dr. Patrick Zweidler-McKay of the University if Texas MD Anderson Cancer Center. Zweidler-McKay will discuss his team’s work in the same session on Engraftin™, a human recombinant enzyme technology that increases the efficiency of engraftment and reduces graft failure in transplantation of cord blood derived stem cells.

Research results in animal models by Christopherson and Zweider-McKay show that both Engraftin and CD26 Inhibitor can enhance homing and rate of engraftment, which will result in reduced patient morbidity and mortality in bone marrow transplants. American Stem Cell, Inc., the developer of both technologies, plans to begin human trials in the next few months.

There are over 250,000 new cancer patients per year who require or would benefit from stem cell transplantation and as many as 20% are unable to find a blood or marrow match.

Kim Waterman | EurekAlert!
Further information:
http://ww.rush.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>