Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnet-controlled camera in the body

04.06.2008
Images from inside the body? It can be done with tiny cameras which the patient has to swallow. In the past there was no way of controlling the device as it passed through the body. Now it can be steered and stopped where desired, and even deliver images of the esophagus.

Images of the inside of the intestine can be obtained even today: The patient swallows a camera that is no larger than a candy. It makes its way through the intestine and transmits images of the intestinal villi to an external receiver which the patient carries on a belt.

This device stores the data so that the physician can later analyze them and identify any hemorrhages or cysts. However, the camera is not very suitable for examinations of the esophagus and the stomach. The reason is that camera only takes about three or four seconds to make its way through the esophagus – producing two to four images per second – and once it reaches the stomach, its roughly five-gram weight causes it to drop very quickly to the lower wall of the stomach.

In other words, it is too fast to deliver usable images. For examinations of the esophagus and the stomach, therefore, patients still have to swallow a rather thick endoscope.

In collaboration with engineers from the manufacturer Given Imaging, the Israelite Hospital in Hamburg and the Royal Imperial College in London, researchers from the Fraunhofer Institute for Biomedical Engineering in Sankt Ingbert have developed the first-ever control system for the camera pill. “In future, doctors will be able to stop the camera in the esophagus, move it up and down and turn it, and thus adjust the angle of the camera as required,” says IBMT team leader Dr. Frank Volke.

“This allows them to make a precise examination of the junction between the esophagus and the stomach, for if the cardiac sphincter is not functioning properly, gastric acid comes up the esophagus and causes heartburn. In the long term, this may even cause cancer of the esophagus. Now, with the camera, we can even scan the stomach walls.” But how do the researchers manage to steer the disposable camera inside the body? “We have developed a magnetic device roughly the size of a bar of chocolate. The doctor can hold it in his hand during the examination and move it up and down the patient’s body. The camera inside follows this motion precisely,” says Volke.

The steerable camera pill is constructed in much the same way as its predecessor: It consists of a camera, a transmitter that sends the images to the receiver, a battery and several cold-light diodes which briefly flare up like a flashlight every time a picture is taken. One prototype of the camera pill has already passed its first practical test in the human body. The researchers demonstrated in a self-experiment that the camera can be kept in the esophagus for about ten minutes, even if the patient is sitting upright.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN
http://www.fraunhofer.de/EN/bigimg/2008/rn6fo1g.jsp

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>