Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless vision implant

30.05.2008
About 30 million people around the world have grown legally blind due to retinal diseases. The EPI-RET project has sought for a technical solution for the past twelve years to help these patients. This work has resulted in a unique system – afully implantable visual prosthesis.

For twelve years, experts from different disciplines in the fields of microelectronics, neurophysics, information engineering, computer science, materials science and medicine have been working to develop a visual prosthetic device for patients who have lost their sight through diseases of the retina.

In September 2007, their effort was rewarded. In a clinical study including six patients, the team was able to demonstrate not only that a completely implantable vision prosthesis is technically feasible and proven functioning, but also that it enables patients to perceive visual images.

“For normally sighted people that may not seem much, but for the Blind, it is a major step,” comments Dr. Hoc Khiem Trieu from the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg. “After years of blindness, the patients were able to see spots of light or geometric patterns, depending on how the nerve cells were stimulated.”

Dr. Hoc Khiem Trieu has been involved from the outset of this project, which was funded by the German Ministry of Education and Research. Together with Dr. Ingo Krisch and Dipl.-Ing. Michael Görtz he translated the specifications given by the medical experts and material scientists into an implant and chip design. The scientists are to receive the Joseph von Fraunhofer Prize 2008 for their work.

“A milestone was reached when the prosthetic system finally operated wirelessly and remotely controlled,” explains Dr. Ingo Krisch. “A great deal of detailed work was necessary before the implant could be activated without any external cable connections.” “The designs became smaller and smaller, the materials more flexible, more robust and higher in performance, so that the implant now fits comfortably in the eye,” reports Michael Görtz. The system benefits from a particular disease pattern, and it uses a specific operating principle to restore sight: Suffering from retinitis pigmentosa, the light sensitive cells are destroyed, but the connection of the nerve cells to the brain remains intact.

The scientists have bypassed the defects of the retina by means of a visual prosthesis. The complete system comprises the implant and an external transmitter integrated in a spectacle-frame. The implant system converts the image patterns into interpretable stimulation signals. Data and energy are transferred to the implant by a telemetric link. The nerve cells inside the eye are then stimulatedaccording to the captured images. Those intact cells are innervated by means of three-dimensional stimulation electrodes that rest against the retina like small studs.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic4.jsp

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>