Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wireless vision implant

About 30 million people around the world have grown legally blind due to retinal diseases. The EPI-RET project has sought for a technical solution for the past twelve years to help these patients. This work has resulted in a unique system – afully implantable visual prosthesis.

For twelve years, experts from different disciplines in the fields of microelectronics, neurophysics, information engineering, computer science, materials science and medicine have been working to develop a visual prosthetic device for patients who have lost their sight through diseases of the retina.

In September 2007, their effort was rewarded. In a clinical study including six patients, the team was able to demonstrate not only that a completely implantable vision prosthesis is technically feasible and proven functioning, but also that it enables patients to perceive visual images.

“For normally sighted people that may not seem much, but for the Blind, it is a major step,” comments Dr. Hoc Khiem Trieu from the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg. “After years of blindness, the patients were able to see spots of light or geometric patterns, depending on how the nerve cells were stimulated.”

Dr. Hoc Khiem Trieu has been involved from the outset of this project, which was funded by the German Ministry of Education and Research. Together with Dr. Ingo Krisch and Dipl.-Ing. Michael Görtz he translated the specifications given by the medical experts and material scientists into an implant and chip design. The scientists are to receive the Joseph von Fraunhofer Prize 2008 for their work.

“A milestone was reached when the prosthetic system finally operated wirelessly and remotely controlled,” explains Dr. Ingo Krisch. “A great deal of detailed work was necessary before the implant could be activated without any external cable connections.” “The designs became smaller and smaller, the materials more flexible, more robust and higher in performance, so that the implant now fits comfortably in the eye,” reports Michael Görtz. The system benefits from a particular disease pattern, and it uses a specific operating principle to restore sight: Suffering from retinitis pigmentosa, the light sensitive cells are destroyed, but the connection of the nerve cells to the brain remains intact.

The scientists have bypassed the defects of the retina by means of a visual prosthesis. The complete system comprises the implant and an external transmitter integrated in a spectacle-frame. The implant system converts the image patterns into interpretable stimulation signals. Data and energy are transferred to the implant by a telemetric link. The nerve cells inside the eye are then stimulatedaccording to the captured images. Those intact cells are innervated by means of three-dimensional stimulation electrodes that rest against the retina like small studs.

Press Office | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>