Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A guided broncoscope achieves biopsy of 75% pulmonary nodules of 2 cm or more without puncture or surgery

21.05.2008
A broncoscope guided by means of electromagnetic navigation has managed to achieve the biopsy of 75% of pulmonary nodules greater than 2 cm, according to Doctor Luis Seijo, specialist in Pneumology at the University Hospital of Navarra.

This is the hospital in the whole of Spain which has the greatest experience in the use of this novel device and which enables access to pulmonary lesions without recourse to surgery or transthoracic puncture, conventional techniques that increase risk for the patient.

The basics of navigator-guided broncoscopy is in accessing the interior of the bronchial “tree” of the patient and to the affected nodule(s). It is guided by a system which shows the position of the instrument used to carry out the biopsy in real time. In the case of the lung, the system is equipped with an electromagnetic probe, which acts as the guide.

On reaching the nodule in question, the probe is substituted by a biopsy pincers or cytological needle, instruments that enable a sample of the lesion to be obtained. The procedure also facilitates sampling adenopathies or mediastinic ganglia that are of interest for analysis. At the University Hospital of Navarra this procedure, which can be carried out on a day-patient basis, is undertaken with the patient under sedation.

Basic planning

To initiate the broncoscopy it is necesary to plan the operation with the data previously obtained from a conventional thorax CAT scan. This information is transferred to a computer software programme which recreates the patients bronchial tree in a virtual manner.

With this graphical information the pneumologist can plan the operation in detail. “The planning is a key stage in carrying out the procedure successfully. The specialist marks reference points on the computer images which will subsequently enable him or her to navigate in real time to the nodule”, according to Doctor Seijo.

The virtual references marked include the lesion which is the target of the biopsy. It is important to mark identifiable points which, during the operation, will enable a triangulation of the position of the probe within the bronchial tree. Prior to initiating the endoscopic procedure, the specialist refers to this computer planning data from a hard disc inserted into a computer in the operating theatre.

During the broncoscopy

The navigation team creates an electromagnetic field which encompasses the patient’s thorax and enables placing the probe in three-dimensional space within the bronchial tree of the patient. The technique makes it possible to know the position and orientation of the probe at all times, as well as the direction of the lesion to be diagnosed from the probe and the distance separating the two. “The concept is similar to that of a GPS”, said Doctor Seijo.

Once the broncoscope is introduced orally or nasally, the same reference points marked in the virtual planning have now to be marked in real time. With the electromagnetic probe, the same points marked in the virtual planning of the bronchial tree of the patient are fixed. The computer detects if there exist divergences between the virtual and real reference points or not. A divergence of less than 4 mm is ideal.

In this way the system makes ongoing calculations, fixing the position of the probe within the patient’s thorax and, thereby, within the virtual recreation generated from the prior scan. “This is how we manage to navigate to the lesion on which we wish to carry out a biopsy. Normally 5 or 6 reference points are marked although, given the complexity of the bronchial tree, with its multitude of bifurcations, intermediate reference points are marked that act as “radio beacons” during the navigation to the nodule in question”, stated the pneumologist.

The electromagnetic probe travels through the interior of the bronchial ramifications of the patient, inserted within an extendable working tube. Once the target is reached, this tube can be fixed and the probe substituted by the instrument required to take the tissue sample (the biopsy) of the lesion.

The risks involved with this diagnostic procedure are much less than those of transthoracic puncturing and, of course, than those of a thoracotomy (open surgery of the thorax). As an illustration of this reduced risk, the incidence of pneumothorax caused by the conventional transthoracic technique is 20% while, using navigation-guided broncoscopy, this figure drops to 6%.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1751&hizk=I

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>