Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced MRI Studies Provide New Insight on Early Parkinson's Disease

21.04.2008
Parkinson's disease is a degenerative disorder of the brain affecting movement, speech, mood, behavior, thinking and sensation for which there is no known cause or cure.

Two studies from the University at Buffalo being presented at the 2008 American Academy of Neurology meeting in Chicago shed new light on very early development of the disease.

The work is the result of a joint project by neurology and imaging specialists from UB, Stavanger University Hospital and University of Bergen, both in Norway.

Turi O. Dalaker, M.D., a doctoral fellow from Stavanger University Hospital who conducted the research in the Buffalo Neuroimaging Analysis Center (BNAC), is first author on both studies. The BNAC, housed in Kaleida Health's Buffalo General Hospital, is part of the Jacobs Neurological Institute, the Department of Neurology in the UB School of Medicine and Biomedical Sciences.

The symptoms of Parkinson's disease (PD) result from disintegration of the brain's white matter, the network of nerves that transport messages to the various brain regions, and grey matter, the brain regions where those messages are received, interpreted and acted upon.

Using advanced magnetic resonance imaging (MRI) technologies available at the Buffalo Neuroimaging Analysis Center (BNAC), the researchers can identify brain regions linked to Parkinson's disease based on images showing the status of both white and grey matter.

One study, a case-control investigation, compared brain MRI scans and scores on the Mini-Mental State Examination (MMSE), a standard mental screening test, of 155 patients diagnosed with early Parkinson's disease with those of 101 normal subjects. Results will be presented today (April 17, 2008).

This study describes one of the first large-scale analyses of the extent of global (overall), tissue-specific and regional brain atrophy, and white matter hyperintensities (WMH). WMH are diseased areas of the white matter seen commonly in brain MRI scans in the elderly.

Results showed that in Parkinson's patients, white matter hyperintensities were associated significantly with lower scores on the mental test: The more areas of hyperintensity, the lower the MMSE score.

"The relationship between higher white matter hyperintensities and lower MMSE scores in PD provide a possible explanation for cognitive impairment in PD," said Dalaker.

The second study examined whether mild cognitive impairment in early PD is associated with atrophy of a specific brain region. The researchers were interested also in investigating the possible link between mild cognitive impairment in PD and a higher risk of developing dementia. Results were presented April 16.

Applying an MRI analytical process called voxel-based morphology, Dalaker and colleagues analyzed high-resolution MRI scans of 43 newly diagnosed PD patients and those of 31 sex-matched normal controls.

They found that the PD patients with mild cognitive impairment showed a trend toward reduced grey matter in the cingulate area, a brain region associated with cognitive performance.

"This study shows that cingulate atrophy is associated with early cognitive deficit in PD," said Dalaker, "and might serve as a possible biomarker for increased risk of developing dementia in PD."

The subjects in both studies were part of The Norwegian ParkWest project, a four-center prospective longitudinal cohort study of patients with PD from southwestern Norway. The project involves 265 patients with early stage incident PD, their caregivers and a control group of 205 subjects with similar age- and sex- distribution. The researchers plan to follow this sample for 10 years.

Additional contributors to the cingulate study from the BNAC were Robert Zivadinov, M.D., Ph.D., UB associate professor of neurology and director of the BNAC, Jennifer Cox, Ph.D., and Ronald Antulov, M.D.

Jan P. Larsen, M.D., Ph.D.; Mona Beyer, M.D., Ph.D.; Guido Alves, M.D., Ph.D.; Kolbjorn Bronnick, and Dag Aarsland, M.D., Ph.D., all researchers from Stavanger, Norway, and Ole-Bjorn Tysnes, M.D., Ph.D., from Bergen, Norway, also contributed to this study.

All of the above were involved in the WMH study, plus Niels Bergsland and Michael Dwyer from the BNAC, and Arpad Kelemen, Ph.D., and Ralph Benedict, Ph.D., UB associate professors of neurology.

Dalaker's BNAC research was supported by a Dr. Larry D. Jacobs Fellowship, The Leiv Eiriksson mobility programme through the Research Council of Norway, and a grant from the Norwegian Society of Radiology. The Norwegian ParkWest study was funded in part by the Western Norway Regional Health Authority and the Research Council of Norway.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities. The School of Medicine and Biomedical Sciences, School of Dental Medicine, School of Nursing, School of Pharmacy and Pharmaceutical Sciences and School of Public Health and Health Professions are the five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>